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PREFACE

PREFACE

This document is one of a series of guides to software engineering produced by
the Board for Software Standardisation and Control (BSSC), of the European Space
Agency. The guides contain advisory material for software developers conforming to
ESA's Software Engineering Standards, ESA PSS-05-0. They have been compiled from
discussions with software engineers, research of the software engineering literature,
and experience gained from the application of the Software Engineering Standards in
projects.

Levels one and two of the document tree at the time of writing are shown in
Figure 1. This guide, identified by the shaded box, provides guidance about
implementing the mandatory requirements for the software detailed design and
production phase described in the top level document ESA PSS-05-0.
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Figure 1: ESA PSS-05-0 document tree

The Guide to the Software Engineering Standards, ESA PSS-05-01, contains
further information about the document tree. The interested reader should consult this
guide for current information about the ESA PSS-05-0 standards and guides.

The following past and present BSSC members have contributed to the
production of this guide: Carlo Mazza (chairman), Bryan Melton, Daniel de Pablo,
Adriaan Scheffer and Richard Stevens.
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CHAPTER 1
INTRODUCTION

1.1 PURPOSE

ESA PSS-05-0 describes the software engineering standards to be
applied for all deliverable software implemented for the European Space
Agency (ESA), either in house or by industry [Ref 1].

ESA PSS-05-0 defines the second phase of the software
development life cycle as the  ‘Architectural Design Phase' (AD phase). The
output of this phase is the Architectural Design Document (ADD). The third
phase of the life cycle is the  ‘Detailed Design and Production Phase' (DD
phase). Activities and products are examined in the  ‘DD review' (DD/R) at
the end of the phase.

The DD phase can be called the  ‘implementation phase' of the life
cycle because the developers code, document and test the software after
detailing the design specified in the ADD.

This document provides guidance on how to produce the Detailed
Design Document (DDD), the code and the Software User Manual (SUM).
This document should be read by all active participants in the DD phase,
e.g. designers, programmers, project managers and product assurance
personnel.

1.2 OVERVIEW

Chapter 2 discusses the DD phase. Chapters 3 and 4 discuss
methods and tools for detailed design and production. Chapter 5 and 6
describe how to write the DDD and SUM, starting from the templates.
Chapter 7 summarises the life cycle management activities, which are
discussed at greater length in other guides.

 All the mandatory practices in ESA PSS-05-0 relevant to the DD
phase are repeated in this document. The identifier of the practice is added
in parentheses to mark a repetition. No new mandatory practices are
defined.
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CHAPTER 2
THE DETAILED DESIGN AND PRODUCTION PHASE

2.1 INTRODUCTION

Software design is the ‘process of defining the architecture,
components, interfaces, and other characteristics of a system or
component’ [Ref 2]. Detailed design is the process of defining the lower-
level components, modules and interfaces. Production is the process of:
• programming - coding the components;
• integrating - assembling the components;
• verifying - testing modules, subsystems and the full system.

The physical model outlined in the AD phase is extended to
produce a structured set of component specifications that are consistent,
coherent and complete. Each specification defines the functions, inputs,
outputs and internal processing of the component.

The software components are documented in the Detailed Design
Document (DDD). The DDD is a comprehensive specification of the code. It
is the primary reference for maintenance staff in the Transfer phase (TR
phase) and the Operations and Maintenance phase (OM phase).

The main outputs of the DD phase are the:
• source and object code;
• Detailed Design Document (DDD);
• Software User Manual (SUM);
• Software Project Management Plan for the TR phase (SPMP/TR);
• Software Configuration Management Plan for the TR phase (SCMP/TR);
• Software Quality Assurance Plan for the TR phase (SQAP/TR);
• Acceptance Test specification (SVVP/AT).

Progress reports, configuration status accounts, and audit reports
are also outputs of the phase. These should always be archived.

The detailed design and production of the code is the responsibility
of the developer. Engineers developing systems with which the software
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interfaces may be consulted during this phase. User representatives and
operations personnel may observe system tests.

DD phase activities must be carried out according to the plans
defined in the AD phase (DD01). Progress against plans should be
continuously monitored by project management and documented at regular
intervals in progress reports.

Figure 2.1 is an ideal representation of the flow of software products
in the DD phase. The reader should be aware that some DD phase activities
can occur in parallel as separate teams build the major components and
integrate them. Teams may progress at different rates; some may be
engaged in coding and testing while others are designing. The following
subsections discuss the activities shown in Figure 2.1.

SCMP/TR

Examined
ADD

Verified
Subsystems

Verified
System

Approved
DDD,SUM

Detail
Design

Write
Test Specs

Code
and test

Integrate
and test

DD/R

Write
TR Plans

Accepted RID

CASE tools
Methods
Prototyping

SPMP/TR

SQAP/TR

SVVP/AT

SCMP/DD
SPMP/DD

SQAP/DD
SVVP/DD

Accepted SPR
code

Test tools

Static Analysers
Dynamic Analysers

Debuggers

CM tools

Draft
SVVP/AT
SVVP/ST
SVVP/IT
SVVP/UT

Draft
DDD
SUM

Examine
ADD

Approved
ADD

Walkthroughs
Inspections

Figure 2.1: DD phase activities

2.2 EXAMINATION OF THE ADD

If the developers have not taken part in the AD/R they should
examine the ADD and confirm that it is understandable. Developers should
consult ESA PSS-05-04,  ‘Guide to the Software Architectural Design Phase'
for help on ADDs. The examination should be carried out by staff familiar
with the architectural design method. The developers should also confirm
that adequate technical skill is available to produce the outputs of the DD
phase.
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2.3 DETAILED DESIGN

Design standards must be set at the start of the DD phase by
project management to coordinate the collective efforts of the team. This is
especially necessary when development team members are working in
parallel.

The developers must first complete the top-down decomposition of
the software started in the AD phase (DD02) and then outline the processing
to be carried out by each component. Developers must continue the
structured approach and not introduce unnecessary complexity. They must
build defences against likely problems.

Developers should verify detailed designs in design reviews, level by
level. Review of the design by walkthrough or inspection before coding is a
more efficient way of eliminating design errors than testing.

The developer should start the production of the user
documentation early in the DD phase. This is especially important when the
HCI component is significantly large: writing the SUM forces the developer
to keep the user's view continuously in mind.

The following subsections discuss these activities in more detail.

2.3.1 Definition of design standards

Wherever possible, standards and conventions used in the AD
phase should be carried over into the DD phase. They should be
documented in part one of the DDD. Standards and conventions should be
defined for:
• design methods;
• documentation;
• naming components;
• Computer Aided Software Engineering (CASE) tools;
• error handling.

2.3.2 Decomposition of the software into modules

As in architectural design, the first stage of detailed design is to
define the functions, inputs and outputs of each software component.
Whereas architectural design only considered the major, top-level
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components, this stage of detailed design must specify all the software
components.

The developer starts with the major components defined in the ADD
and continues to decompose them until the components can be expressed
as modules in the selected programming languages.

Decomposition should be carried out using the same methods and
tools employed in the AD phase. CASE tools and graphical methods
employed in architectural design can still be used.

 Component processing is only specified to the level of detail
necessary to answer the question:  ‘is further decomposition necessary?'.
Decomposition criteria are:
• will the module have too many statements?
• will the module be too complex?
• does the module have low cohesion?
• does the module have high coupling?
• does the module contain similar processing to other modules?

ESA PSS-05-04  ‘Guide to the Software Architectural Design Phase',
discusses complexity, cohesion and coupling.

2.3.3 Reuse of the software

Software reuse questions can arise at all stages of design. In the AD
phase decisions may have been taken to reuse software for all or some
major components, such as:
• application generators;
• database management systems;
• human-computer interaction utilities;
• mathematical utilities;
• graphical utilities.

In the DD phase developers may have to:
• decide which library modules to use;
• build shells around the library modules to standardise interfaces (e.g.

for error handling) and enhance portability;
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• define conventions for the library modules to use (more than one
combination of library modules might do the same job).

Developers should resist the temptation to clone a library module
and make minor modifications, because of the duplication that results.
Instead they should put any extra processing required in a shell module that
calls the library module.

A common reason for reusing software is to save time at the coding
and unit testing stage. Reused software is not normally unit tested because
this has already been carried out in a previous project or by an external
organisation. Nevertheless developers should convince themselves that the
software to be reused has been tested to the standards appropriate for their
project. Integration testing of reused software is always necessary to check
that it correctly interfaces with the rest of the software. Integration testing of
reused software can identify performance and resource problems.

2.3.4 Definition of module processing

The developer defines the processing steps in the second stage of
detailed design. The developer should first outline the module processing in
a Program Design Language (PDL) or pseudo-code and refine it, step-by-
step, into a detailed description of the processing in the selected
programming language.

The processing description should reflect the type of programming
language. When using a procedural language, the description of the
processing should contain only:
• sequence constructs (e.g. assignments, invocations);
• selection constructs (e.g. conditions, case statements);
• iteration constructs (e.g. do loops)

The definition of statements that do not affect the logic (e.g. i/o
statements, local variable declarations) should be deferred to the coding
stage.

Each module should have a single entry point and exit point. Control
should flow from the entry point to exit point. Control should flow back only
in an iteration construct, i.e. a loop. Branching, if used at all, should be
restricted to a few standard situations (e.g. on error), and should always
jump forward, not backward, in the control flow.
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Recursion is a useful technique for processing a repeating data
structure such as a tree, or a list, and for evaluating a query made up of
arithmetic, relational, or logical expressions. Recursion should only be used
if the programming language explicitly supports it.

PDLs and pseudo-code can be included in the code as comments,
easing maintenance, whereas flowcharts cannot. Flowcharts are not
compatible with the stepwise refinement technique, and so PDLs and
pseudo-code are to be preferred to flowcharts for detailed design.

2.3.5 Defensive design

Developers should anticipate possible problems and include
defences against them. Myers [Ref. 14] describes three principles of
defensive design:
• mutual suspicion;
• immediate detection;
• redundancy.

The principle of mutual suspicion says that modules should assume
other modules contain errors. Modules should be designed to handle
erroneous input and error reports from other modules.

Every input from another module or component external to the
program (e.g. a file) should be checked. When input data is used in a
condition (e.g. CASE statement or IF... THEN.. ELSE...), an outcome should
be defined for every possible input case. Every IF condition should have an
ELSE clause.

When modules detect errors and return control to the caller, they
should always inform the caller that an error has occurred. The calling
module can then check the error flag for successful completion of the called
module. It should be unnecessary for the caller to check the other module
outputs.

It is possible for a subordinate to fail to return control. Modules
should normally set a  ‘timeout' when waiting for a message, a rendezvous
to be kept, or an event flag to be set. Modules should always act
appropriately after a timeout (e.g. retry the operation). For a full discussion of
error recovery actions, see reference 14.
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The principle of immediate detection means that possible errors
should be checked for immediately. If the reaction is not immediate, the error
should be flagged for later action.

 Conventions for taking action after detection of an error should be
established. Normally error control responsibilities of a module should be at
the same level as normal control responsibilities. Error logging, if done at all,
should be done at the point where action is taken, and not at the point of
error detection, since the significance of the error may not be apparent at the
point of detection. It may be appropriate to insert diagnostic code at the
point of detection, however.

Only the top level module should have responsibility for stopping
the program. Developers should always check that there are no  ‘STOP'
statements lurking in an otherwise apparently useful module. It may be
impossible to reuse modules that suddenly take over responsibility for the
control flow of the whole system. Halting the program and giving a
traceback may be acceptable in prototype software (because it helps fault
diagnosis), but not in operational software.

Redundancy has been discussed in ESA PSS-05-04,  ‘Guide to the
Software Architectural Design Phase'. In detailed design, redundancy
considerations can lead designers to include checksums in records and
identity tags to confirm that an item is really what it is assumed to be (e.g.
header record).

Myers also makes a useful distinction between  ‘passive fault
detection' and  ‘active fault detection'. The passive fault detection approach
is to check for errors in the normal flow of execution. Examples are modules
that always check their input, and status codes returned from system calls.
The active fault detection approach is to go looking for problems instead of
waiting for them to arise. Examples are  ‘monitor' programs that
continuously check disk integrity and attempts to violate system security.

Often most system code is dedicated to error handling. Library
modules for error reporting should be made available to prevent duplication
of error handling code. When modules detect errors, they should call error
library modules to perform standard error handling functions such as error
logging and display.

Defensive design principles have influenced the design of most
modern languages. Strong type-checking languages automatically check
that the calling data type matches the called data type, for example. Ada
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goes further and builds range checking into the language. The degree to
which a language supports defensive design can be a major factor in its
favour.

2.3.6 Optimisation

Conventionally, optimisation means to make the best compromise
between opposing tendencies. Improvement in one area is often associated
with degradation in another. Software performance is often traded-off
against maintainability and portability, for example.

The optimisation process is to:
• define the attributes to change (e.g. execution time);
• measure the attribute values before modifying the software;
• measure the attribute values after modifying the software;
• analyse the change in attribute values before deciding whether to

modify the software again.

Optimisation can stop when the goals set in the SRD have been
met. Every change has some risk, and the costs and benefits of each
change should be clearly defined.

The  ‘law of diminishing returns' can also be used to decide when to
stop optimisation. If there are only slight improvements in the values of
attribute values after optimisation, the developers should stop trying to seek
improvements.

Failure to get a group of people to agree about the solution to an
optimisation problem is itself significant. It means that the attribute is
probably optimised, and any improvement in one attribute results in an
unacceptable degradation in another.

The structured programming method discourages optimisation
because of its effect on reliability and maintainability. Code should be clear
and simple, and its optimisation should be left to the compiler. Compilers
are more likely to do a better job of optimisation than programmers,
because compilers incorporate detailed knowledge of the machine. Often
the actual causes of inefficiency are quite different from what programmers
might suspect, and can only be revealed with a dynamic analysis tool (see
Section 4.3.9).
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 In summary, developers should define what they are trying to
optimise and why, before starting to do it. If in doubt, remember Jackson's
two rules of optimisation [Ref. 6]:
• don't do it, but if you must:
• don't do it yet.

2.3.7 Prototyping

Experimental prototyping can be useful for:
• comparing alternative designs;
• checking the feasibility of the design.

The high-level design will normally have been identified during the
AD phase. Detailed designs may have to be prototyped in the DD phase to
find out which designs best meet the requirements.

The feasibility of a novel design idea should be checked by
prototyping. This ensures that an idea not only works, but also that it works
well enough to meet non-functional requirements for quality and
performance.

2.3.8 Design reviews

Detailed designs should be reviewed top-down, level by level, as
they are generated during the DD phase. Reviews may take the form of
walkthroughs or inspections. Walkthroughs are useful on all projects for
informing and passing on expertise. Inspections are efficient methods for
eliminating defects before production begins.

Two types of walkthrough are useful:
• code reading;
• ‘what-if?' analysis.

In a code reading, reviews trace the logic of a module from
beginning to end. In  ‘what-if?' analysis, component behaviour is examined
for specific inputs.

Static analysis tools evaluate modules without executing them.
Static analysis functions are built in to some compilers. Output from static
analysis tools may be input to a code review.
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When the detailed design of a major component is complete, a
critical design review must certify its readiness for implementation (DD10).
The project leader should participate in these reviews, with the team leader
and team members concerned.

2.3.9 Documentation

The developers must produce the DDD and the SUM. While the
ADD specifies tasks, files and programs, the DDD specifies modules. The
SUM describes how to use the software, and may be affected by
documentation requirements in the SRD.

The recommended approach to module documentation is:
• create the module template to contain headings for the standard DDD

entries:

n Component identifier
n.1 Type
n.2 Purpose
n.3 Function
n.4 Subordinates
n.5 Dependencies
n.6 Interfaces
n.7 Resources
n.8 References
n.9 Processing
n.10 Data

• detail the design by filling in the sections, with the processing section
containing the high-level definition of the processing in a PDL or
pseudo-code;

• assemble the completed templates for insertion in the DDD.

A standard module template enables the DDD component
specifications to be generated automatically. Tools to extract the module
header from the source code and create an entry for the DDD greatly
simplify maintenance. When a module is modified, the programmer edits,
compiles and verifies the source module, and then runs the tool to generate
the new DDD entry.

The SUM contains the information needed by the users of the
software to operate it. The SUM should be gradually prepared during the DD
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phase. The developers should exercise the procedures described in the
SUM when testing the software.

2.4 TEST SPECIFICATIONS

The purpose of testing is to prove empirically that the system, or
component under test, meets specified requirements. Normally it is not
possible to prove by testing that a component contains no errors.

According to Myers, an important aspect of testing is to execute a
program with the intention of finding errors [Ref. 14]. Testers should adopt
this  ‘falsificationist' approach because it encourages testers to devise tests
that the software fails, not passes. This idea originates from Karl Popper, the
influential philosopher who first proposed the  ‘falsificationist' approach as a
scientific method.

Testers must be critical and objective for testing to be effective. On
large projects, system and acceptance test specifications should not be
written by the analysts, designers and programmers responsible for the
SRD, ADD, DDD and code. On small and medium-size projects, it is
acceptable for the developer to write the test specifications and for the user
or product assurance representatives to review them. Users should run the
acceptance tests, not the developers.

2.4.1 Unit test planning

Unit test plans must be generated in the DD phase and
documented in the Unit Test section of the Software Verification and
Validation Plan (SVVP/UT). The Unit Test Plan should describe the scope,
approach and resources required for the unit tests, and take account of the
verification requirements in the SRD (see Section 2.5.3 and Chapter 7).

2.4 Test designs, test cases and test procedures

The developer must write specifications for the:
• acceptance tests,
• system tests,
• integration tests,
• unit tests
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in the DD phase and document them in the SVVP. The specifications should
be based on the test plans, and comply with the verification and acceptance
testing requirements in the SRD. The specifications should define the:
• test designs (SVV19);
• test cases (SVV20);
• test procedures (SVV21);

see Section 2.6 below and Chapter 7.

When individual modules have been coded and unit tested,
developers have to integrate them into larger components, test the larger
components, integrate the larger components and so on. Integration is
therefore inextricably linked with testing.

The Software Project Management Plan for the DD phase (
SPMP/DD) should contain a delivery plan for the software based on the life
cycle approach adopted. The delivery plan influences the integration tests
defined in the Software Verification and Validation Plan (SVVP/IT). For a
given delivery plan, the SVVP/IT should make integration testing efficient by
minimising the number of test aids (e.g. drivers and stubs) and test data
files required.

2.5 CODING AND UNIT TESTING

Coding is both the final stage of the design process and also the
first stage of production. Coding produces modules, which must be unit
tested. Unit testing is the second stage of the production process.

2.5.1 Coding

The transition from the detailed design stage to the coding stage
comes when the developer begins to write modules that compile in the
programming language. This transition is obvious when detailed design has
been performed with flowcharts, but is less so when the developer has used
a PDL or pseudo-code.

Coding must be based on the principles of:
• structured programming (DD03);
• concurrent production and documentation (DD04).
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Every module should be understandable to a reviewer or
maintenance programmer, moderately familiar with the programming
language and unfamiliar with the program, the compiler and operating
system. Understandability can be achieved in a variety of ways:
• including an introductory header for each module;
• declaring all variables;
• documenting all variables;
• using meaningful, unambiguous names;
• avoiding mixing data types;
• avoiding temporary variables;
• using parentheses in expressions;
• laying out code legibly;
• adding helpful comments;
• avoiding obscuring the module logic with diagnostic code;
• adhering to structured programming rules;
• being consistent in the use of the programming language;
• keeping modules short;
• keeping the code simple.

2.5.1.1 Module headers

Each module should have a header that introduces the module.
This should include:
• title;
• configuration item identifier (SCM15);
• original author (SCM16);
• creation date (SCM17);
• change history (SCM18).

If tools to support consistency between source code and DDD are
available, the introduction should be followed by explanatory comments
from the component description in the DDD part 2.

The header usually comes after the module title statement (e.g.
SUBROUTINE) and before the variable declarations.
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The standard header should be made available so that it can be
edited, completed and inserted at the head of each module.

2.5.1.2 Declarations of variables

Programmers should declare the type of all variables, whatever the
programming language. The possible values of variables should either be
stated in the variable declaration (as in Ada), or documented. Some
languages, such as FORTRAN and Prolog, allow variables to be used
without explicit declaration of their type.

 Programmers using weakly typed languages should declare all
variables. Where strong typing is a compiler option, it should always be
used (e.g. IMPLICIT NONE in some FORTRAN compilers). Declarations
should be grouped, with argument list variables, global variables and local
variable declarations clearly separated.

2.5.1.3 Documentation of variables

Programmers should document the meaning of all variables.
Documentation should be integrated with the code (e.g. as a comment to
the declaration). The possible values of variables should either be stated in
the variable declaration (as in Ada), or documented.

2.5.1.4 Names of variables

Finding meaningful names for variables exercises the imagination of
every programmer, but it is effort well worth spending. Names should reflect
the purpose of the variable. Natural language words should be used
wherever possible. Abbreviations and acronyms, if used, should be defined,
perhaps as part of the comment to a variable's declaration.

Similar names should be avoided so that a single typing error in the
name of a variable does not identify another variable. Another reason not to
use similar names is to avoid ambiguity.

2.5.1.5 Mixing data types

Some programming languages prevent the mixing of data types by
the strong type checking feature (e.g. Ada). Mixing data types in
expressions should always be avoided, even if the programming language
allows it (e.g. FORTRAN). Examples of mixing data types include:
• mixing data types in expressions;
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• mismatching data types in an argument list;
• equivalencing different data types.

2.5.1.6 Temporary variables

The temptation to define temporary variables to optimise code
should be avoided. Although the use of temporary variables can simplify a
statement, more statements are required, and more variables have to be
declared. The net effect is that the module as a whole appears more
complex.

2.5.1.7 Parentheses

Parentheses should be used in programming language expressions
to avoid ambiguity, and to help the reader identify the sequences of
operations to be performed. They should not be used solely to override the
precedence rules of the language.

2.5.1.8 Layout and presentation

The layout of the code should allow the control logic to be easily
appreciated. The usual technique is to separate blocks of sequential code
from other statements by blank lines, and to indent statements in condition
or iteration blocks. Statements that begin and end sequence, iteration and
condition constructs should be aligned vertically (e.g. BEGIN... END, DO...
ENDDO, and IF... ELSEIF... ELSE... ENDIF). Long statements should be
broken and continued on the next line at a clause in the logic, not at the end
of the line. There should never be more than one statement on a line.

2.5.1.9 Comments

Comments increase understandability, but they are no substitute for
well-designed, well-presented and intelligible code. Comments should be
used to explain difficult or unusual parts of the code. Trivial comments
should be avoided.

PDL statements and pseudo-code may be preserved in the code as
comments to help reviewers. Comments should be clearly distinguishable
from code. It is not adequate only to use a language keyword; comments
should be well separated from code by means of blank lines, and perhaps
written in mixed case (if upper case is used for the code).
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2.5.1.10 Diagnostic code

Diagnostic code is often inserted into a module to:
• make assertions about the state of the program;
• display the contents of variables.

Care should be taken to prevent diagnostic code obscuring the
module logic. There is often a temptation to remove diagnostic code to
present a clean ‘final' version of the source code. However routine
diagnostic code that allows verification of correct execution can be
invaluable in the maintenance phase. It is therefore recommended that
routine diagnostic code be commented out or conditionally compiled (e.g.
included as  ‘debug lines'). Ad hoc diagnostic code added to help discover
the cause of a particular problem should be removed after the problem has
been solved.

2.5.1.11 Structured programming

The rules of structured programming are given in section 3.2.3.
These rules should always be followed when a procedural language is used
(such as FORTRAN, COBOL, Pascal or Ada). It is easy to break the rules of
structured programming when the older procedural languages (e.g.
FORTRAN, COBOL) are used, but less so with the more modern ones
(Pascal, Ada).

2.5.1.12 Consistent programming

Language constructs should be used consistently. Inconsistency
often occurs when modules are developed and maintained by different
people. Coding standards can help achieve consistency, but it is not
realistic for them to cover every situation. Modifications to the code should
preserve the style of the original.

2.5.1.13 Module size

Modules should be so short that the entire module can be seen at
once. This allows the structure, and the control logic, to be appreciated
easily. The recommended maximum size of modules is about 50 lines,
excluding the header and diagnostic code.

2.5.1.14 Code simplicity

Modules should be  ‘simple'. The principle of  ‘Occam's razor', (i.e.
that an idea should be expressed by means of the minimum number of
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entities), should be observed in programming. Simplicity can be checked
formally by applying complexity measures [Ref. 11]. Simplicity can be
checked informally using the rule of seven: the number of separate things
that have to be held in mind when examining a part of the module should
not exceed seven. Whatever method of evaluation is used, all
measurements of simplicity should be confirmed by peer review.

2.5.2 Coding standards

Coding standards should be established for all the languages used,
and documented or referenced in the DDD. They should provide rules for:
• presentation, (e.g. header information and comment layout);
• naming programs, subprograms, files, variables and data;
• limiting the size of modules;
• using library routines, especially:

- operating system routines;
- commercial library routines (e.g. numerical analysis);
- project-specific utility routines;

• defining constants;
• defining data types;
• using global data;
• using compiler specific features not in the language standard;
• error handling.

2.5.3 Unit testing

Unit tests verify the design and implementation of all components
from the lowest level defined in the detailed design up to the lowest level in
the architectural design (normally the task level). Test harnesses, composed
of a collection of drivers and stubs, need to be constructed to enable unit
testing of modules below the top level.

Unit tests verify that a module is doing what it is supposed to do (
‘black box' testing), and that it is doing it in the way it was intended ( ‘white
box' testing). The traditional technique for white box testing is to insert
diagnostic code. Although this may still be necessary for testing real-time
behaviour, debuggers are now the preferred tool for white box testing. The
usual way to test a new module is to step through a few test cases with the
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debugger and then to run black box tests for the rest. Later, black box tests
are run to fully exercise the module. The input test data should be realistic
and sample the range of possibilities. Programmers revert to  ‘white box'
testing mode when they have to debug a problem found in a black box test.

Before a module can be accepted, every statement shall be
successfully executed at least once (DD06). Coverage data should be
collected during unit tests. Tools and techniques for collecting coverage
data are:
• debuggers;
• dynamic analysers;
• diagnostic code.

The inclusion of diagnostics can clutter up the code (see Section
2.5.1.10) and debuggers and dynamic analysers are much preferable.
Coverage should be documented in a debug log, a coverage report, or a
printout produced by the diagnostic code.

Unit testing is normally carried out by individuals or teams
responsible for producing the component.

Unit test plans, test designs, test cases, test procedures and test
reports are documented in the Unit Test section of the Software Verification
and Validation Plan (SVVP/UT).

2.6 INTEGRATION AND SYSTEM TESTING

The third stage of the production process is to integrate major
components resulting from coding and unit testing into the system. In the
fourth stage of production, the fully integrated system is tested.

2.6.1 Integration

Integration is the process of building a software system by
combining components into a working entity. Integration of components
should proceed in an orderly function-by-function sequence. This allows the
operational capabilities of the software to be demonstrated early, and thus
gives visible evidence that the project is progressing.

Normally, the first components to be integrated support input and
output. Once these components have been integrated and tested, they can
be used to test others. Whatever sequence of functions is used, it should
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minimise the resources required for testing (e.g. testing effort and test tools),
while ensuring that all source statements are verified. The Software
Verification and Validation Plan section for the integration tests (SVVP/IT)
should define the assembly sequence for integration.

Within the functional groupings, components may be integrated and
tested top-down or bottom-up. In top-down integration,  ‘stubs' simulate
lower-level modules. In bottom-up integration,  ‘drivers' simulate the higher-
level modules. Stubs and drivers can be used to implement test cases, not
just enable the software to be linked and loaded.

The integration process must be controlled by the software
configuration management procedures defined in the SCMP (DD05). Good
SCM procedures are essential for correct integration. All deliverable code
must be identified in a configuration item list (DD12).

2.6.2 Integration testing

Integration testing is done in the DD phase when the major
components defined in the ADD are assembled. Integration tests should
verify that major components interface correctly.

Integration testing must check that all the data exchanged across
an interface comply with the data structure specifications in the ADD
(DD07). Integration testing must confirm that the control flows defined in the
ADD have been implemented (DD08).

Integration test designs, test cases, test procedures and test
reports are documented in the Integration Test section of the Software
Verification and Validation Plan (SVVP/IT).

2.6.3 System testing

System testing is the process of testing an integrated software
system. This testing can be done in the development or target environment,
or a combination of the two. System testing must verify compliance with
system objectives, as stated in the SRD (DD09). System testing should
include such activities as:
• passing data into the system, correctly processing and outputting it (i.e.

end-to-end system tests);
• practice for acceptance tests (i.e. verification that user requirements will

be met);
• stress tests (i.e. measurement of performance limits);
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• preliminary estimation of reliability and maintainability;
• verification of the Software User Manual.

Trends in the occurrence of defects should be monitored in system
tests; the behaviour of such trends is important for the estimation of
potential acceptability.

For most embedded systems, as well as systems using special
peripherals, it is often useful or necessary to build simulators for the systems
with which the software will interface. Such simulators are often required
because of:
• late availability of the other systems;
• limited test time with the other systems;
• desire to avoid damaging delicate and/or expensive systems.

Simulators are normally a separate project in themselves. They
should be available on time, and certified as identical, from an interface
point of view, with the systems they simulate.

System test designs, test cases, test procedures and test reports
are documented in the System Test section of the Software Verification and
Validation Plan (SVVP/ST).

The SUM is a key document during system (and acceptance)
testing. The developers should verify it when testing the system.

2.7 PLANNING THE TRANSFER PHASE

Plans of TR phase activities must be drawn up in the DD phase.
Generation of TR phase plans is discussed in Chapter 7. These plans cover
project management, configuration management, verification and validation
and quality assurance. Outputs are the:
• Software Project Management Plan for the TR phase (SPMP/TR);
• Software Configuration Management Plan for the TR phase ( SCMP/TR);
• Software Quality Assurance Plan for the TR phase (SQAP/TR).
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2.8 THE DETAILED DESIGN PHASE REVIEW

The development team should hold walkthroughs and internal
reviews of a product before its formal review. After production, the DD
Review (DD/R) must consider the results of the verification activities and
decide whether to transfer the software (DD11). This should be a technical
review. The recommended procedure is described in ESA PSS-05-10, which
is based closely on the IEEE standard for Technical Reviews [Ref. 4].

 Normally, only the code, DDD, SUM and SVVP/AT undergo the full
technical review procedure involving users, developers, management and
quality assurance staff. The Software Project Management Plan (SPMP/TR),
Software Configuration Management Plan (SCMP/TR), and Software Quality
Assurance Plan (SQAP/TR) are usually reviewed by management and
quality assurance staff only.

In summary, the objective of the DD/R is to verify that:
• the DDD describes the detailed design clearly, completely and in

sufficient detail to enable maintenance and development of the software
by qualified software engineers not involved in the project;

• modules have been coded according to the DDD;
• modules have been verified according to the unit test specifications in

the SVVP/UT;
• major components have been integrated according to the ADD;
• major components have been verified according to the integration test

specifications in the SVVP/IT;
• the software has been verified against the SRD according to the system

test specifications in the SVVP/ST;
• the SUM explains what the software does and instructs the users how

to operate the software correctly;
• the SVVP/AT specifies the test designs, test cases and test procedures

so that all the user requirements can be validated.

The DD/R begins when the DDD, SUM, and SVVP, including the test
results, are distributed to participants for review. A problem with a document
is described in a  ‘Review Item Discrepancy' (RID) form. A problem with
code is described in a Software Problem Report (SPR). Review meetings are
then held that have the documents, RIDs and SPRs as input. A review
meeting should discuss all the RIDs and SPRs and decide an action for
each. The review meeting may also discuss possible solutions to the
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problems raised by them. The output of the meeting includes the processed
RIDs, SPRs and Software Change Requests (SCR).

The DD/R terminates when a disposition has been agreed for all the
RIDs. Each DD/R must decide whether another review cycle is necessary, or
whether the TR phase can begin.
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CHAPTER 3
 METHODS FOR DETAILED DESIGN AND PRODUCTION

3.1 INTRODUCTION

This chapter summarises a range of design methods and
programming languages. The details about each method and programming
language should be obtained from the references. This guide does not
make any particular method or language a standard, nor does it define a set
of acceptable methods and languages. Each project should examine its
needs, choose appropriate methods and programming languages, and
justify the selection in the DDD.

3.2 DETAILED DESIGN METHODS

Detailed design first extends the architectural design to the bottom
level components. Developers should use the same design method that
they employed in the AD phase. ESA PSS-05-04,  ‘Guide to the Software
Architectural Design Phase', discusses:
• Structured Design;
• Object Oriented Design;
• Jackson System Development;
• Formal Methods.

The next stage of design is to define module processing. This is
done by methods such as:
• flowcharts;
• stepwise refinement;
• structured programming;
• program design languages (PDLs);
• pseudo coding;
• Jackson Structured Programming (JSP).
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3.2.1 Flowcharts

A flowchart is ‘a control flow diagram in which suitably annotated
geometrical figures are used to represent operations, data, equipment, and
arrows are used to indicate the sequential flow from one to another’ [Ref. 2].
It should represent the processing.

Flowcharts are an old software design method, dating from a time
when the only tools available to a software designer were a pencil, paper,
and stencil. A box is used to represent process steps and diamonds are
used to represent decisions. Arrows are used to represent control flow.

Flowcharts predate structured programming and they are difficult to
combine with a stepwise refinement approach. Flowcharts are not well
supported by tools and so their maintenance can be a burden. Although
directly related to module internals, they cannot be integrated with the code,
unlike PDLs and pseudo-code. For all these reasons, flowcharts are no
longer a recommended technique for detailed design.

3.2.2 Stepwise refinement

Stepwise refinement is the most common method of detailed
design. The guidelines for stepwise refinement are:
• start from functional and interface specifications;
• concentrate on the control flow;
• defer data declarations until the coding phase;
• keep steps of refinement small to ease verification;
• review each step as it is made.

Stepwise refinement is closely associated with structured
programming (see Section 3.2.3).

3.2.3 Structured programming

Structured programming is commonly associated with the name of
E.W. Dijkstra [Ref. 10]. It is the original  ‘structured method' and proposed:
• hierarchical decomposition;
• the use of only sequence, selection and iteration constructs;
• avoiding jumps in the program.
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Myers emphasises the importance of writing code with the intention
of communicating with people instead of machines [Ref.14].

The Structured Programming method emphasises that simplicity is
the key to achieving correctness, reliability, maintainability and adaptability.
Simplicity is achieved through using only three constructs: sequence,
selection and iteration. Other constructs are unnecessary.

Structured programming and stepwise refinement (see Section
3.2.3) are inextricably linked. The goal of refinement is to define a procedure
that can be encoded in the sequence, selection and iteration constructs of
the selected programming language.

Structured programming also lays down the following rules for
module construction:
• each module should have a single entry and exit point;
• control flow should proceed from the beginning to the end;
• related code should be blocked together, not dispersed around the

module;
• branching should only be performed under prescribed conditions (e.g.

on error).

The use of control structures other than sequence, selection and
iteration introduces unnecessary complexity. The whole point about banning
‘GOTO' was to prevent the definition of complex control structures. Jumping
out of loops causes control structures only to be partially contained within
others and makes the code fragile.

Modern block-structured languages, such as Pascal and Ada,
implement the principles of structured programming, and enforce the three
basic control structures. Ada supports branching only at the same logical
level and not to arbitrary points in the program.

The basic rules of structured programming can lead to control
structures being nested too deeply. It can be quite difficult to follow the logic
of a module when the control structures are nested more than three or four
levels. Three common ways to minimise this problem are to:
• define more lower-level modules;
• put the error-handling code in blocks separate to the main code.
• branching to the end of the module on detecting an error.
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3.2.4 Program Design Languages

Program Design Languages (PDL) are used to develop, analyse
and document a program design [from Ref. 7]. A PDL is often obtained from
the essential features of a high-level programming language. A PDL may
contain special constructs and verification protocols.

 It is possible to use a complete programming language (e.g.
Smalltalk, Ada) as a PDL [Ref. 7]. ANSI/IEEE Std 990-1987  ‘IEEE
Recommended Practice for Ada As a Program Design Language', provides
recommendations  ‘reflecting the state of the art and alternative approaches
to good practice for characteristics of PDLs based on the syntax and
semantics of Ada' [Ref. 9]. Using Ada as a model, it says that a PDL should
provide support for:
• abstraction;
• decomposition;
• information hiding;
• stepwise refinement;
• modularity;
• algorithm design;
• data structure design;
• connectivity;
• adaptability.

Adoption of a standard PDL makes it possible to define interfaces to
CASE tools and programming languages. The ability to generate executable
statements from a PDL is desirable.

Using an entire language as a PDL increases the likelihood of tool
support. However, it is important that a PDL be simple. Developers should
establish conventions for the features of a language that are to be used in
detailed design.

 PDLs are the preferred detailed design method on larger projects,
where the existence of standards and the possibility of tool support makes
them more attractive than pseudo-code.
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3.2.5 Pseudo-code

Pseudo-code is a combination of programming language
constructs and natural language used to express a computer program
design [Ref. 2]. Pseudo-code is distinguished from the code proper by the
presence of statements that do not compile. Such statements only indicate
what needs to be coded. They do not affect the module logic.

Pseudo-code is an informal PDL (see Section 3.2.4) that gives the
designer greater freedom of expression than a PDL, at the sacrifice of tool
support. Pseudo-code is acceptable for small projects and in prototyping,
but on larger projects a PDL is definitely preferable.

3.2.6 Jackson Structured Programming

Jackson Structured Programming (JSP) is a program design
technique that derives a program's structure from the structures of its input
and output data [Ref. 6]. The JSP dictum is that  ‘the program structure
should match the data structure'.

In JSP, the basic procedure is to:
• consider the problem environment and define the structures for the data

to be processed;
• form a program structure based on these data structures;
• define the tasks to be performed in terms of the elementary operations

available, and allocate each of those operations to suitable components
in the program structure.

The elementary operations (i.e. statements in the programming
language) must be grouped into one of the three composite operations:
sequence, iteration and selection. These are the standard structured
programming constructs, giving the technique its name.

JSP is suitable for the detailed design of software that processes
sequential streams of data whose structure can be described hierarchically.
JSP has been quite successful for information systems applications.

Jackson System Development (JSD) is a descendant of JSP. If
used, JSD should be started in the SR phase (see ESA PSS-05-03, Guide to
the Software Requirements Definition Phase).
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3.3 PRODUCTION METHODS

Software production involves writing code in a programming
language, verifying the code and integrating it with other code to make a
working system. This section therefore discusses programming languages
and integration methods.

3.3.1 Programming languages

Programming languages are best classified by their features and
application domains. Classification by  ‘generation' (e.g. 3GL, 4GL) can be
very misleading because the generation of a language can be completely
unrelated to its age (e.g. Ada, LISP). Even so, study of the history of
programming languages can give useful insights into the applicability and
features of particular languages [Ref. 13].

3.3.1.1 Feature classification

The following classes of programming languages are widely
recognised:
• procedural languages;
• object-oriented languages;
• functional languages;
• logic programming languages.

Application-specific languages based on database management
systems are not discussed here because of their lack of generality. Control
languages, such as those used to command operating systems, are also
not discussed for similar reasons.

Procedural languages are sometimes called  ‘imperative languages'
or  ‘algorithmic languages'. Functional and logic programming languages
are often collectively called  ‘declarative languages' because they allow
programmers to declare  ‘what' is to be done rather than  ‘how'.

3.3.1.1.1 Procedural languages

 A  ‘procedural language' should support the following features:
• sequence (composition);
• selection (alternation);
• iteration;
• division into modules.
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The traditional procedural languages such as COBOL and
FORTRAN support these features.

The sequence construct, also known as the composition construct,
allows programmers to specify the order of execution. This is trivially done
by placing one statement after another, but can imply the ability to branch
(e.g. GOTO).

The sequence construct is used to express the dependencies
between operations. Statements that come later in the sequence depend on
the results of previous statements. The sequence construct is the most
important feature of procedural languages, because the program logic is
embedded in the sequence of operations, instead of in a data model (e.g.
the trees of Prolog, the lists of LISP and the tables of RDBMS languages).

The selection construct, also known as the condition or alternation
construct, allows programmers to evaluate a condition and take appropriate
action (e.g. IF... THEN and CASE statements).

 The iteration construct allows programmers to construct loops (e.g.
DO...). This saves repetition of instructions.

The module construct allows programmers to identify a group of
instructions and utilise them elsewhere (e.g. CALL...). It saves repetition of
instructions and permits hierarchical decomposition.

Some procedural languages also support:
• block structuring;
• strong typing;
• recursion.

Block structuring enforces the structured programming principle
that modules should have only one entry point and one exit point. Pascal,
Ada and C support block structuring.

Strong typing requires the data type of each data object to be
declared [Ref. 2]. This stops operators being applied to inappropriate data
objects and the interaction of data objects of incompatible data types (e.g.
when the data type of a calling argument does not match the data type of a
called argument). Ada and Pascal are strongly typed languages. Strong
typing helps a compiler to find errors and to compile efficiently.
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Recursion allows a module to call itself (e.g. module A calls module
A), permitting greater economy in programming. Pascal, Ada and C support
recursion.

3.3.1.1.2 Object-oriented languages

An object-oriented programming language should support all
structured programming language features plus:
• inheritance;
• polymorphism;
• messages.

Examples of object-oriented languages are Smalltalk and C++.
Reference 14 provides a useful review of object-oriented programming
languages.

Inheritance is the technique by which modules can acquire
capabilities from higher-level modules, i.e. simply by being declared as
members of a class, they have all the attributes and services of that class.

Polymorphism is the ability of a process to work on different data
types, or for an entity to refer at runtime to instances of specific classes.
Polymorphism cuts down the amount of source code required. Ideally, a
language should be completely polymorphic, so the need to formulate
sections of code for each data type is unnecessary. Polymorphism implies
support for dynamic binding.

Object-oriented programming languages use ‘messages' to
implement interfaces. A message encapsulates the details of an action to be
performed. A message is sent from a  ‘sender object' to a  ‘receiver object'
to invoke the services of the latter.

3.3.1.1.3 Functional languages

Functional languages, such as LISP and ML, support declarative
structuring. Declarative structuring allows programmers to specify only
‘what' is required, without stating how it is to be done. It is an important
feature, because it means standard processing capabilities are built into the
language (e.g. information retrieval) .

With declarative structuring, procedural constructs are unnecessary.
In particular, the sequence construct is not used for the program logic. An
underlying information model (e.g. a tree or a list) is used to define the logic.
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If some information is required for an operation, it is automatically obtained
from the information model. Although it is possible to make one operation
depend on the result of a previous one, this is not the usual style of
programming.

 Functional languages work by applying operators (functions) to
arguments (parameters). The arguments themselves may be functional
expressions, so that a functional program can be thought of as a single
expression applying one function to another. For example if DOUBLE is the
function defined as DOUBLE(X) = X + X, and APPLY is the function that
executes another function on each member of a list, then the expression
APPLY(DOUBLE, [1, 2, 3]) returns [2, 4, 6].

 Programs written in functional languages appear very different from
those written in procedural languages, because assignment statements are
absent. Assignment is unnecessary in a functional language, because all
relationships are implied by the information model.

Functional programs are typically short, clear, and specification-like,
and are suitable both for specification and for rapid implementation, typically
of design prototypes. Modern compilers have reduced the performance
problems of functional languages.

A special feature of functional languages is their inherent suitability
for parallel implementation, but in practice this has been slow to materialise.

3.3.1.1.4 Logic programming languages

Logic programming languages implement some form of classical
logic. Like functional languages, they have a declarative structure. In
addition they support:
• backtracking;
• backward chaining;
• forward chaining.

Prolog is the foremost logic programming language.

Backtracking is the ability to return to an earlier point in a chain of
reasoning when an earlier conclusion is subsequently found to be false. It is
especially useful when traversing a knowledge tree. Backtracking is
incompatible with assignment, since assignment cannot be undone
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because it erases the contents of variables. Languages which support
backtracking are, of necessity, non-procedural.

Backward chaining starts from a hypothesis and reasons
backwards to the facts that cause the hypothesis to be true. For example if
the fact A and hypothesis B are chained in the expression IF A THEN B,
backwards chaining enables the truth of A to be deduced from the truth of B
(note that A may be only one of a number of reasons for B to be true).

Forward chaining is the opposite of backward chaining. Forward
chaining starts from a collection of facts and reasons forward to a
conclusion. For example if the fact X and conclusion Y are chained in the
expression IF X THEN Y, forward chaining enables the truth of Y to be
deduced from the truth of X.

Forward chaining means that a change to a data item is
automatically propagated to all the dependent items. It can be used to
support  ‘data-driven' reasoning.

3.3.1.2 Applications

Commonly recognised application categories for programming
languages are:
• real-time systems, including control systems and embedded systems;
• transaction processing, including business and information systems;
• numerical analysis;
• simulation;
• human-computer interaction toolkits (HCI);
• artificial intelligence (AI);
• operating systems;

The application area of language strongly influences the features
that are built into it. There is no true  ‘general purpose language', although
some languages are suitable for more than one of the application categories
listed above.

3.3.1.3 FORTRAN

FORTRAN was the first widely-used high-level programming
language. Its structuring concepts include the now-familiar IF... THEN
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alternation, DO iteration, primitive data types such as integer, and procedure
composition. FORTRAN does not support recursion.

 FORTRAN is familiar to generations of programmers who have
learned to use it safely. It is a simple language, compared with Ada, and can
be compiled rapidly into efficient object code. Compilers are available for
most hardware, but these are not always compatible, both because of the
addition of machine-dependent features, especially input/output, and
because of successive versions of FORTRAN itself. However, good
standards exist.

 The language includes some features now generally considered
risky, such as:
• the GOTO statement, which allows the rules of structured programming

to be easily broken;
• the EQUIVALENCE statement, which permits different names to be

used for the same storage location;
• local storage, which permits possibly undesired values to be used from

a previous call;
• multiple entry and exit points.

FORTRAN remains the primary language for scientific software.
Most compilers allow access to operating system features, which, at the
expense of portability, allows FORTRAN to be used for developing real-time
control systems.

3.3.1.4 COBOL

COBOL remains the most widely used programming language for
business and administration systems. As a procedural language it provides
the usual sequence, selection (IF... OTHERWISE...) and iteration constructs
(PERFORM...). COBOL has powerful data structuring and file handling
mechanisms (e.g. hierarchically arranged records, direct access and
indexed files). Although its limited data manipulation facilities severely
restricts the programmers' ability to construct complex arithmetic
expressions, it does allow fixed point arithmetic, necessary for accurate
accounting.

COBOL was conceived as the first  ‘end-user' programming
language. It relies on verbal expressions, not symbols (e.g. ADD,
SUBTRACT, MULTIPLY, DIVIDE instead of +, -, x and ). It has therefore been
criticised as forcing a verbose programming style. While this does help
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make COBOL programs self-explanatory, COBOL programs can still be
difficult to understand if they are not well-structured. Jackson's Principles of
Program Design are explained with the aid of examples of good and bad
COBOL programming [Ref. 6].

3.3.1.5 Pascal

Pascal was conceived by a single designer (Niklaus Wirth) to teach
the principles of structured programming. It is accordingly simple and direct,
though perhaps idiosyncratic. It contains very clear constructs: IF... THEN...
ELSE, WHILE... DO, REPEAT... UNTIL, CASE... OF, and so on. Sets,
procedures, functions, arrays, records and other constructs are matched by
a versatile and safe data typing system, which permits the compiler to
detect many kinds of error.

Wirth omitted several powerful features to make Pascal compile
efficiently. For example, functions may not return more than one argument,
and this must be a primitive type (although some extensions permit records
to be returned). String handling and input/output functions are simplistic and
have been the source of portability problems.

Pascal handles recursive data structures, such as lists and trees by
means of explicit pointers and (sometimes) variant records. These defeat
the type checking mechanism and are awkward to handle.

 Pascal is now well-defined in an ISO standard, and is very widely
available with good compilers and supporting tools. To a considerable
extent the language enforces good programming practice.

3.3.1.6 C

C is a language in the same family as Pascal, with its roots in Algol.
The language is less strongly typed than Pascal or Algol. It is easy and
efficient to compile, and because of its low-level features, such as bit
manipulation, can exploit machine-dependent facilities.

C has a rich variety of operators that allow programmers to adopt a
very terse style. This can unfortunately make programs difficult to read and
understand. Discipline is required to produce code that is portable and
maintainable. Coding standards are especially necessary to make C code
consistent and readable.

One advantage of C is its close connection with the Unix operating
system, which guarantees C a place as a (or the) major systems
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programming language. A very wide range of tools and library modules are
available for the language.

3.3.1.7 Modula-2

Modula-2 is derived from Pascal. It offers a few new constructs and
considerably more power and generality. Two important features are
modularity, including incremental compilation, and simulation of
concurrency and inter-process communication (via co-routining).

 Niklaus Wirth, the inventor of both Pascal and Modula-2, intended
that Modula-2 replace Pascal. However Modula-2 is not widely used
because of the scarcity of development tools for popular platforms. In
contrast to Ada, its main competitor, it is a  ‘small' language (its compiler is
only about 5000 lines, as opposed to Ada's several hundred thousand lines
[Ref. 13]).

3.3.1.8 Ada

Ada is a powerful language well suited for the creation of large,
reliable and maintainable systems. Unlike most languages it was
systematically developed (from a US Department of Defense specification
[Ref. 7]). Its many features include tasks (processes) able to communicate
asynchronously with each other, strong typing and type checking, and
generic programming.

 Ada derives ideas from many sources, including several of the
languages mentioned here. Although it is a  ‘large' language, and therefore
difficult to master, it can seem relatively familiar to C and Pascal
programmers. Applications written in Ada may often be slower than
comparable applications written in other languages, perhaps largely due to
the immaturity of the compilers. This may become less of a problem in time
(as has been seen with other languages).

Ada provides features normally called from the operating system by
other languages, providing a valuable degree of device independence and
portability for Ada programs. However Ada real time control features may
not be adequate for some applications, and direct access to operating
system services may be necessary.

Ada does not support inheritance, so it is not an object-oriented
language. Ada allows programmers to create  ‘generic packages' which act
as classes. However it is not possible to structure generic packages and
inherit package attributes and services.
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3.3.1.9 Smalltalk

Smalltalk is the leading member of the family of object-oriented
languages. The language is based on the idea of classes of object, which
communicate by passing messages, and inherit attributes from classes to
which they belong.

Smalltalk is inherently modular and extensible; indeed, every
Smalltalk program is an extension of the core language. Large libraries are
available offering a wide range of predefined classes for graphics, data
handling, arithmetic, communications and so on. Programs can often be
created by minor additions to, or modifications of, existing objects.

The language is thus very suitable for rapid iterative development
and prototyping, but it is also efficient enough for many applications. It is the
language of choice for educating software engineers in object-oriented
programming.

 Smalltalk differs from other programming languages in being a
complete programming environment. This feature is also the language's
Achilles heel: using Smalltalk is very much an  ‘all or nothing' decision.
Interfacing to software written in other languages is not usually possible.

3.3.1.10 C++

C++ is an object-oriented and more strongly typed version of C. It
therefore enforces greater discipline in programming than C. It is a
noticeably more modern language, exploiting the strongest concepts of
Pascal and Smalltalk, while providing all the features of its parent language
C. The rapid emergence of C++ has been helped by the appearance of
tools and standards.

3.3.1.11 LISP

LISP was the first list processing language. It is mostly a functional
language but with some procedural features. Because a program is itself a
list, it can readily be treated as data by another program. Hence, LISP is an
excellent language for writing interpreters and expert systems, and much
pioneering work in artificial intelligence has been done in the language.

LISP is now a mature language and accordingly has a rich set of
predefined tools (functions) and environments available for it. LISP
compilers are available on most architectures, but these are not well
standardised; so-called Common LISP is a widespread dialect with
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commercial backing. LISP is often run on specialised workstations with
language-sensitive editors, interpreters and debuggers, and sometimes with
dedicated hardware. Interfaces to C and Prolog, and to procedural
components like graphics packages, are frequently provided.

The language was once heavily criticised for inefficiency and
illegibility. List manipulation is inherently more costly than, say, array
manipulation, but careful optimisation and good compilers have greatly
reduced the overheads. The style of LISP programs is more verbose and
less legible than that of modern functional languages such as ML. However,
recent versions of LISP have again become more purely functional and have
updated their syntax. The problem of understanding heavily bracketed
expressions (lists of lists) has largely been solved with pretty-printers and
automatic bracket checkers.

3.3.1.12 ML

ML (short for Meta-Language) is the most widely used of a family of
functional (i.e. non-procedural) programming languages that include Hope
and Miranda. Like Prolog, it is declarative and admirably free of side-effects.
Functions are similar to those in Pascal, except that they may take any
desired form and return essentially any type of result as a structure. ML is
notably modular and polymorphic, permitting creation of reusable
components in a style analogous to that of Ada. ML lacks the quirkiness of
some functional languages, and permits procedural constructs for
efficiency.

3.3.1.13 Prolog

Prolog was the first of a family of logic programming languages. Full
predicate logic is too complex to implement efficiently, so Prolog
compromises by implementing a restricted but useful subset, namely Horn
Clause logic. This permits a single affirmative conclusion, but from any
number of premises. If a conclusion can be reached in more than one way,
more than one clause is provided for it. Thus, groups of clauses act as the
analogues of IF... THEN or CASE statements, while a single clause is
effectively a procedure or function.

Because a conclusion may fail to be reached by one route, but the
same, or another conclusion may be reached by another route, Prolog
permits backtracking. This provides a powerful search mechanism. The
need to maintain an extensive stack means, however, that Prolog requires a
lot of run-time storage.
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The language is essentially declarative, not procedural, as the
clauses relate one fact or conclusion to another: thus, if something is true
then it is always true. Prolog is very well suited to systems embodying rules,
deduction, and knowledge (including databases), though it is capable of
graphics, arithmetic and device control on a range of machines. It is not
ideally suited for highly numerical applications. Prolog itself is (virtually)
typeless and freely polymorphic, making it insecure; many of its daughter
languages embody varieties of type checking. The language is inherently
extensible. With its interactive environment, it is very suitable for prototyping;
it has also been used for specification. Most Prolog compilers permit
modules of C to be called, typically as if they were built-in predicates.

3.3.1.14 Summary

Table 3.3.1.14 lists the programming languages, their types, primary
applications and standards.

Language Type Primary Applications Standard
FORTRAN Procedural Numerical analysis

Real-time systems
ISO 1539

COBOL Procedural Transaction
processing

ISO 1989

Pascal Procedural Numerical analysis
Real-time systems

ISO 7185

C Procedural Real-time systems
Operating systems

ANSI

Modula-2 Procedural Real-time systems
Numerical analysis

Ada Procedural Real-time systems
Simulation

MIL STD 1815A-1983

Smalltalk Object-oriented Simulation
HCI toolkits

Smalltalk-80

C++ Object-oriented Real-time systems
Simulation
HCI toolkits

AT&T

LISP Functional AI Common LISP
ML Functional AI
Prolog Logic programming AI Edinburgh syntax

Table 3.3.1.14 Summary of Programming Languages

3.3.2 Integration methods

A function-by-function integration method should be used that:
• establishes the infrastructure functions first;
• harmonises with the delivery plan.



ESA PSS-05-05 Issue 1 Revision 1 (March 1995) 41
METHODS FOR DETAILED DESIGN AND PRODUCTION

It is necessary to establish the infrastructure functions to minimise
the amount of test software needed. Examples of infrastructure functions are
those that provide data input and output. Building the infrastructure saves
the effort of providing drivers and stubs for the components that use it. The
infrastructure provides the kernel system from which the rest of the system
can grow.

In an incremental development, the delivery plan can constrain the
integration method by forcing functions to be delivered in a user-specified
order, not one that minimises the integration effort.

 Each function will be provided by a group of components that may
be integrated  ‘top-down' and  ‘bottom-up'. The idea of integrating all the
components at one level before proceeding to the next is common to both
methods. In top-down integration, the next level to integrate is always the
next lower one, while in bottom-up integration the next higher level is
integrated.

 The integration methods are described in more detail below.

3.3.2.1 Function-by-function

The steps in the function-by-function method are to:

1) select the functions to be integrated;

2) identify the components that carry out the functions;

3) identify the component dependencies (i.e. input data flows or control
flows).

4) order the components by the number of dependencies (i.e. fewest
dependencies first);

5) when a component depends on another later in the order, create a
driver to simulate the input of the component later in the order;

6) introduce the components with the fewest dependencies first.

This approach minimises the number of stubs and drivers required.
Stubs and drivers simulate the input to a component, so if the  ‘real' tested
components provide the input, effort does not need to be expended on
producing stubs and drivers.



42 ESA PSS-05-05 Issue 1 Revision 1 (March 1995)
METHODS FOR DETAILED DESIGN AND PRODUCTION

Data flow diagrams are useful for representing component
dependencies. Output flows that are not input to any other component
should be omitted from the diagram.

When the incremental delivery life cycle approach is being used, the
basic procedure above must be modified:

a) define the functions;

b) define when the functions are required;

c) for each release;

do steps 1) to 6) above.

Dependencies with components in a previous or a future release are
not counted. If one component depends upon another in a previous release,
the existing software can satisfy the dependency. If the component depends
upon a component in a future release then a driver to simulate the input
must be provided.

3.3.2.2 Top-down integration

The top-down approach to integration is to use  ‘stub' modules to
represent lower-level modules. As modules are completed and tested, they
replace the stubs. Stubs can be used to implement test cases.

3.3.2.3 Bottom-up integration

The bottom-up approach to integration is to use  ‘driver' modules to
represent higher-level modules. As modules are completed and tested, they
replace the drivers. Drivers can be used to implement test cases.
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CHAPTER 4
 TOOLS FOR DETAILED DESIGN AND PRODUCTION

4.1 INTRODUCTION

This chapter discusses the tools for detailing the design and
producing the software. Tools can be combined to suit the needs of a
particular project.

4.2 DETAILED DESIGN

4.2.1 CASE tools

In all but the smallest projects, CASE tools should be used during
the DD phase. Like many general purpose tools (e.g. such as word
processors and drawing packages), CASE tools should provide:
• windows, icons, menu and pointer (WIMP) style interface for the easy

creation and editing of diagrams;
• what you see is what you get (WYSIWYG) style interface that ensures

that what is created on the display screen closely resembles what will
appear in the document.

Method-specific CASE tools offer the following features not offered
by general purpose tools:
• enforcement of the rules of the methods;
• consistency checking;
• easy modification;
• automatic traceability of components to software requirements;
• configuration management of the design information;
• support for abstraction and information hiding;
• support for simulation.

CASE Tools should have an integrated data dictionary or another
kind or  ‘repository'. This is necessary for consistency checking. Developers
should check that a tool supports the parts of the method that they intend to
use. ESA PSS-05-04,  ‘Guide to the Software Architectural Design Phase'
contains a more detailed list of desirable tool capabilities. The STARTs
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Guide provides a good survey of tools for requirements analysis and
configuration management [Ref. 3].

4.2.2 Configuration managers

Configuration management of the physical model is essential. The
model should evolve from baseline to baseline as it develops in the DD
phase, and enforcement of procedures for the identification, change control
and status accounting of the model are necessary. In large projects,
configuration management tools should be used for the management of the
model database.

4.2.3 Precompilers

A precompiler generates code from PDL specifications. This is
useful in design, but less so in later stages of development unless software
faults can be easily traced back to PDL statements.

4.3 PRODUCTION

A range of production tools are available to help programmers
develop, debug, build and test software. Table 4.3 lists the tools in order of
their appearance in the production process.
Tool Purpose
CASE tools generate module shells
code generators translate formal relationships into source code
editors create and modify source code and documentation
language-sensitive editors create syntactically correct source code
static analysers examine source code
compilers translate source code to object code
linkers join object modules into executable programs
debuggers locate errors during execution
dynamic analysers examine running programs
test tools test modules and programs
word processors document production
documentation generators derive user documentation from the source code
configuration managers store and track versions of modules and files, and record

the constituents of each build

Table 4.3: Production tools
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4.3.1 Modelling tools

Many modelling tools automatically generate constant, type, and
variable declarations for inclusion in the source code of every module. Some
modelling tools can translate diagrams showing the calling tree of modules
into fully commented function or procedure calls, though these may lack
values for actual parameters.

If modelling tools are used, coding begins by completing the
skeleton of the module. All the calls are completed; then iteration constructs
(WHILE, REPEAT, LOOP, etc) are entered; then alternation constructs (IF,
CASE, etc) are inserted. Finally, low-level details such as arithmetic,
input/output, and other system calls are filled in.

4.3.2 Code generators

Numerous code generator packages are now available, claiming to
take the work out of design and coding. They can help reduce the workload
in some areas, such as database management and human-computer
interaction. These areas are characterised by repetitive code, and the need
to perform numerous trivial but essential operations in set sequences. Such
tasks are best automated for accuracy and efficiency.

As code generators become more closely integrated with design
methods, it will be possible to code a larger proportion of the components of
any given system automatically. Current design methods generally provide
limited code generation, for example creating the data declarations and
module skeletons; module bodies must then be coded by hand.

Even if parts of the system are to be coded manually, there are still
advantages in using a code generator. Changes in software requirements
can result in automatic changes to data and module declarations,
preserving and checking consistency across the phases of the life-cycle.

4.3.3 Editors

Largely replaced by the word processor for documentation, basic
text editors are still widely used for source code creation and modification.
Although language-sensitive editors (see Section 4.3.4) offer greater
functionality, basic text editors provide all the facilities that many
programmers require.
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4.3.4 Language-sensitive editors

Language-sensitive editors are now available for many
programming languages. They contain an interpreter that helps the user to
write syntactically correct code. For example, if the user selects  ‘open a file',
a menu appears of the known files of the right type. Language-sensitive
editors are not ideal for some programming languages, because of the
richness of their syntax. Skilled programmers often find them restrictive.

Another approach provides the reserved words of a language from
a keypad, which may be real (on a keyboard or tablet), or virtual (on a
screen panel). The selection of a keyword like WHILE with a single action is
a convenience; the editor may also insert associated syntactic items, such
as brackets and comments such as /* END WHILE */ . This does not
prevent errors, but is at least a useful guide and the freedom of the
programmer is not sacrificed.

The simplest language-sensitive editors do little more than
recognise brackets and provide indentation to match. For example, the
Pascal reserved words BEGIN and END bracket blocks in IF... THEN... ELSE
statements. Automatic indentation after these words have been typed helps
to make programs readable and reduces mistakes.

It is also possible to provide templates for program construction,
containing standard headers, the obligatory sections for constant and type
declarations, and so on. These may be generated automatically by CASE
tools. Editors which recognise these templates (and the general form of a
legal module), can speed development and help prevent errors. There is
considerable scope for the further integration with CASE tools and code
generators.

4.3.5 Static analysers

Static analysis is the process of scanning the text of a program to
check for faults of construction, dangerous or undesirable features, and the
application of software standards. They are especially useful for relatively
unstructured languages such as assembler and FORTRAN. Static analysers
may:
• check for variables that are not used, or are used before being assigned

a value;
• check that the ranges of variables stay within bounds;
• provide a view of the structure of an application;
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• provide a view of the internal logical structure of each module;
• measure the complexity of the code with respect to a metric, such as

cyclomatic complexity [Ref. 11];
• translate the source code to an intermediate language for formal

verification;
• symbolically execute the code by substituting algebraic symbols for

program variables;
• measure simple attributes of the code, such as the number of lines of

code, and the maximum level of nesting.

Although they can be used to expose poorly structured code, static
analysers should not be relied upon to improve poor programming.
Structuring should be done in architectural and detailed design, not after
implementation.

Most compilers provide some simple static analysis features, such
as checking for variables that are not used (see Section 4.3.6). Dedicated
static analysis tools usually provide advanced static analysis functions, such
as analysis of code structure.

Static analysis tools are no substitute for code review. They just
support the review process. Some bad programming practices, such as the
choice of meaningful identifiers, evade all known static analysis tools, for
example.

4.3.6 Compilers

The choice of compiler on a given computer or operating system
may be limited. However, compilers vary widely in speed, thoroughness of
checking, ease of use, handling of standard syntax and of language
extensions, quality of listings and code output, and programming support
features. The choice of compiler is therefore crucial. Trade-offs can become
complex, leading to selection by reputation and not by analysis. Users
should assess their compilation needs and compare the available options
on this basis.

Speed of compilation affects the ease and cost of developing,
debugging, and maintaining the product, whereas code quality affects the
runtime performance of the product itself. Benchmark source code should
therefore reflect the type of code likely to be found in the product to be
developed. Compilers should be compared on such data by measuring
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compilation time, execution time, and object code size. Runtime stack and
heap sizes may also be critical where memory is scarce.

Full checking of compiler compliance with language standards is
beyond the means of essentially all ESA software projects. Standards
organisations such as ISO, ANSI and BSI certify compilers for a few
languages including FORTRAN, COBOL and Pascal. The US Department of
Defense certifies Ada compilers. Manufacturers' documentation should be
scanned for extensions to, or omissions from, the standards.

 Compilers vary widely in programming support features. Good
compilers offer much help to the developer, for example:
• full listings;
• cross-reference;
• data on module sizes;
• diagnostics;
• thorough checking;
• switches (e.g. array bounds checking; strict language or extensions).

Some compilers now offer many of the features of development
environments, including built-in editors and debuggers, trace tools, version
control, linkers, and incremental compilation (with a built-in interpreter).
These can substantially speed development.

Where there are switchable checks, project programming standards
(DDD, section 2.4) should state which options are applicable.

The most advanced compilers perform a range of optimisations for
sequential and parallel machines, attempting to discover and eliminate
source code inefficiencies. These may be switchable, for example by
directives in the source code. Ada explicitly provides for such directives with
the  ‘pragma' statement. Users should investigate whether the optimisations
they require are implemented in candidate compilers.

4.3.7 Linkers

The linker may be provided with the machine, operating system, or
compiler; or, as with Ada, may be integrated with the compiler/interpreter
and runtime system. The user therefore has little control over the choice of
linker. When there is a choice, it should be considered carefully, as modern
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linkers vary considerably in performance, affecting especially the speed of
debugging and maintenance.

It is convenient if the linker can automatically discover the
appropriate libraries and directories to use, and which modules or
components to link. Most linkers can be controlled by parameters, which
can be created by a build or make utility; some are closely integrated with
such utilities, or indeed with compilers.

 In a large system, linking can take significantly longer than
compilation, so users should compare linker performance on realistic
benchmarks before selecting one for a project. Speed is not the only
parameter to consider: some linkers may generate better quality executable
code than others.

4.3.8 Debuggers

The use of interactive symbolic debuggers is strongly encouraged,
especially for verification. A good debugger is integrated with an editor as
well as a compiler/interpreter, and permits a range of investigative modes.
Convenient debugging modes include step-by-step execution, breakpoint
(spypoint) tracing, variable value reporting, watch condition setting (e.g. a
variable beyond a limit value), and interaction.

For graphics, windows, menus, and other software involving cursor
control, the debugger must be properly windowed to avoid confusion with
the software being debugged. On some devices, illegal calls, e.g. graphics
calls outside the frame area, cause processes to abort; debuggers should
be able to trap such calls and permit interactive recovery action, or at least
diagnosis.

 The debugging of real-time software, where it is not possible to
step through code, is a special challenge. The traditional diagnostic log is
still useful here. The requirement is, as with all debugging, to view the
software in a realistic environment. This may be possible with a simulator; if
not, hardware-style techniques, in which bus or circuit signals are monitored
in real time, may be necessary. Implementers of real-time projects should
consider how they may debug and verify their software, and should allocate
resources for this purpose.

4.3.9 Dynamic analysers

Dynamic analysis is the process of measuring how much machine
resources (e.g. CPU time, i/o time, memory) each module, and line of code,
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consumes. In contrast to static analysis (see Section 4.3.5), dynamic
analysis is performed on a running program.

Dynamic analysis tools are used for measuring test coverage, since
lines of code that are not executed consume no resources. The verification
of test coverage, i.e. that all statements have been executed during testing,
is a requirement of ESA PSS-05-0. Test coverage is best measured
automatically.

 Dynamic analysis enables a variety of optimisations to be carried
out to ‘tune' the system. Optimisation can be a very inefficient process
without detailed knowledge of the system performance. Dynamic analysis
tools can locate the parts of the system that are causing performance
problems. Source-level modifications can often yield the desired
performance gains.

Where there are precise performance requirements, developers
should use a dynamic analyser to verify that the system is satisfactorily
tuned, and to direct optimisation effort. If there are no precise performance
requirements, and a system runs satisfactorily, dynamic analysis can still
help detect some types of coding errors (e.g. unnecessary initialisations).

If a dynamic analyser is not available, resource consumption can be
measured by means of timing routines. An interactive debugger can be
used to observe coverage.

4.3.10 Test tools

Test tools may support one or more of the following functions:
• test data generation;
• test driving and harnessing;
• automated results checking;
• fault diagnosis and debugging;
• test data management.

General purpose test tools can sometimes generate large quantities
of input based on simple assumptions. System-specific simulators and
modelling tools are needed if realistic test data is required.

Test drivers and harnesses normally have to be provided by the
developers. The integration plan should identify what test drivers and stubs
are required for testing, and these normally have to be specially developed.
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Interpreter systems permit test drivers and harnesses to be created
interactively. Short test drivers, consisting of little more than such a call, can
be prepared and called as interpreted commands. Such test drivers do not
need to be compiled into the final version. Of the languages mentioned in
Section 3.3.1, Pascal, ML, Prolog, LISP and Smalltalk are known to be
runnable interpretatively.

 Tools that provide automated results checking can greatly increase
the efficiency of regression testing, and thereby its depth and scope.

If the comparison reveals a discrepancy between past and present
results, support for fault diagnosis, via tracebacks of the execution, reports
of the contents of variables, can ease the solution of the problem identified
in the test.

 Perhaps of all the functions, support for the management of test
data is the most important. Management of the input and output test data is
required if regression testing is to be meaningful.

4.3.11 Word processors

A word processor or text processor should be used. Tools for the
creation of paragraphs, sections, headers, footers, tables of contents and
indexes all ease the production of a document. A spelling checker is
essential, and a grammar checker is desirable. An outliner may be found
useful for creation of sub-headings, for viewing the document at different
levels of detail and for rearranging the document. The ability to handle
diagrams is very important.

Documents invariably go through many drafts as they are created,
reviewed and modified. Revised drafts should include change bars.
Document comparison programs, which can mark changed text
automatically, are invaluable for easing the review process.

 Tools for communal preparation of documents are now beginning
to be available, allowing many authors to comment and add to a single
document.

4.3.12 Documentation generators

Documentation generators allow the automatic production of help
and documentation from the information in the code. They help maintain
consistency between code and documentation, and make the process of
documentation truly concurrent with the coding.
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 Code generators (see Section 4.3.2) may include tools for
automatically generating documentation about the screens, windows and
reports that the programmer creates.

4.3.13 Configuration managers

 Configuration management is covered in ESA PSS-05-09,  ‘Guide
to Software Configuration Management'. Implementers should consider the
use of an automated configuration manager in the circumstances of each
project.

A variety of tools, often centred on a database, is available to assist
in controlling the development of software when many modules may exist in
many versions. Some tools allow the developer to specify a configuration (m
modules in n versions), and then automatically compile, link, and archive it.
The use of configuration management tools becomes essential when the
number of modules or versions becomes large.
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CHAPTER 5
 THE DETAILED DESIGN DOCUMENT

5.1 INTRODUCTION

The purpose of a DDD is to describe the detailed solution to the
problem stated in the SRD. The DDD must be an output of the DD phase
(DD13). The DDD must be complete, accounting for all the software
requirements in the SRD (DD15). The DDD should be sufficiently detailed to
allow the code to be implemented and maintained. Components (especially
interfaces) should be described in sufficient detail to be fully understood.

5.2 STYLE

The style of a DDD should be systematic and rigorous. The
language and diagrams used in a DDD should be clear and constructed to
a consistent plan. The document as a whole must be modifiable.

5.2.1 Clarity

A DDD is clear if it is easy to understand. The structure of the DDD
must reflect the structure of the software design, in terms of the levels and
components of the software (DD14). The natural language used in a DDD
must be shared by all the development team.

The DDD should not introduce ambiguity. Terms should be used
accurately.

 A diagram is clear if it is constructed from consistently used
symbols, icons, or labels, and is well arranged. Important visual principles
are to:
• emphasise important information;
• align symbols regularly;
• allow diagrams to be read left-to-right or top-to-bottom;
• arrange similar items in a row, in the same style;
• exploit visual symmetry to express functional symmetry;
• avoid crossing lines and overlaps;
• avoid crowding.
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Diagrams should have a brief title, and be referenced by the text
which they illustrate.

Diagrams and text should complement one another and be as
closely integrated as possible. The purpose of each diagram should be
explained in the text, and each diagram should explain aspects that cannot
be expressed in a few words. Diagrams can be used to structure the
discussion in the text.

5.2.2 Consistency

The DDD must be consistent. There are several types of
inconsistency:
• different terms used for the same thing;
• the same term used for different things;
• incompatible activities happening simultaneously;
• activities happening in the wrong order.

Where a term could have multiple meanings, a single meaning
should be defined in a glossary, and only that meaning should be used in
the DDD.

Duplication and overlap lead to inconsistency. Clues to
inconsistency are a single functional requirement tracing to more than one
component. Methods and tools help consistency to be achieved.

Consistency should be preserved both within diagrams and
between diagrams in the same document. Diagrams of different kinds
should be immediately distinguishable.

5.2.3 Modifiability

A DDD is modifiable if changes to the document can be made
easily, completely, and consistently. Good tools make modification easier,
although it is always necessary to check for unpredictable side-effects of
changes. For example a global string search and replace capability can be
very useful, but developers should always guard against unintended
changes.

Diagrams, tables, spreadsheets, charts and graphs are modifiable if
they are held in a form which can readily be changed. Such items should be
prepared either within the word processor, or by a tool compatible with the
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word processor. For example, diagrams may be imported automatically into
a document: typically, the print process scans the document for symbolic
markers indicating graphics and other files.

Where graphics or other data are prepared on the same hardware
as the code, it may be necessary to import them by other means. For
example, a screen capture utility may create bitmap files ready for printing.
These may be numbered and included as an annex. Projects using methods
of this kind should define conventions for handling and configuration
management of such data.

5.3 EVOLUTION

The DDD should be put under change control by the developer at
the start of the Transfer Phase. New components may need to be added
and old components modified or deleted. If the DDD is being developed by
a team of people, the control of the document may be started at the
beginning of the DD phase.

 The Software Configuration Management Plan defines a formal
change process to identify, control, track and report projected changes, as
soon as they are first identified. Approved changes in components must be
recorded in the DDD by inserting document change records and a
document status sheet at the start of the DDD.

5.4 RESPONSIBILITY

Whoever writes the DDD, the responsibility for it lies with the
developer. The developer should nominate people with proven design and
implementation skills to write the DDD.

5.5 MEDIUM

The DDD is usually a paper document. The DDD may be distributed
electronically when participants have access to the necessary equipment.

5.6 CONTENT

The DDD is the authoritative reference document on how the
software works. Part 2 of the DDD must have the same structure and
identification scheme as the code itself, with a 1:1 correspondence between
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sections of the documentation and the software components (DD14). The
DDD must be complete, accounting for all the software requirements in the
SRD (DD15).

The DDD should be compiled according to the table of contents
provided in Appendix C of ESA PSS-05-0. This table of contents is derived
from ANSI/IEEE Std 1016-1987  ‘IEEE Recommended Practice for Software
Design Descriptions' [Ref. 5]. This standard defines a Software Design
Description as a  ‘representation or model of the software system to be
created. The model should provide the precise design information needed
for the planning, analysis and implementation of the software system'. The
DDD should be such a Software Design Description.

The table of contents is reproduced below. Relevant material
unsuitable for inclusion in the contents list should be inserted in additional
appendices. If there is no material for a section then the phrase  ‘Not
Applicable' should be inserted and the section numbering preserved.

Service Information:
a - Abstract
b - Table of Contents
c - Document Status Sheet
d - Document Change Records made since last issue

Part 1 - General Description

1 Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms and abbreviations
1.4 References
1.5 Overview

2 Project Standards, Conventions and Procedures
2.1 Design standards
2.2 Documentation standards
2.3 Naming conventions
2.4 Programming standards
2.5 Software development tools
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Part 2 - Component Design Specifications

n [Component identifier]

n.1 Type
n.2 Purpose
n.3 Function
n.4 Subordinates
n.5 Dependencies
n.6 Interfaces
n.7 Resources
n.8 References
n.9 Processing
n.10 Data

Appendix A Source code listings
Appendix B Software Requirements vs Components Traceability matrix

A component may belong to a class of components that share
characteristics. To avoid repeatedly describing shared characteristics, a
sensible approach is to reference the description of the class.

References should be given where appropriate, but a DDD should
not refer to documents that follow it in the ESA PSS-05-0 life cycle.

Part 1 of the DDD must be completed before any coding is started.
The component design specification in Part 2 must be complete (i.e. no
TBCs or TBDs) before coding is started.

5.6.1 DDD/Part 1 - General description

5.6.1.1 DDD/Part 1/1 Introduction

This section should describe the purpose and scope, and provide a
glossary, list of references and document overview.

5.6.1.1.1 DDD/Part 1/1.1 Purpose (of the document)

This section should:

(1) describe the purpose of the particular DDD;

(2) specify the intended readership of the DDD.
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5.6.1.1.2 DDD/Part 1/1.2 Scope (of the software)

This section should:

(1) identify the software products to be produced;

(2) explain what the proposed software will do (and will not do, if
necessary);

(3) define relevant benefits, objectives, and goals as precisely as
possible;

(4) be consistent with similar statements in higher-level specifications, if
they exist.

5.6.1.1.3 DDD/Part 1/1.3 Definitions, acronyms and abbreviations

This section should define all terms, acronyms, and abbreviations
used in the DDD, or refer to other documents where the definitions can be
found.

5.6.1.1.4 DDD/Part 1/1.4 References

This section should list all the applicable and reference documents,
identified by title, author and date. Each document should be marked as
applicable or reference. If appropriate, report number, journal name and
publishing organisation should be included.

5.6.1.1.5 DDD/Part 1/1.5 Overview (of the document)

This section should:

(1) describe what the rest of the DDD contains;

(2) explain how the DDD is organised.

5.6.1.2 DDD/Part 1/2 Project standards, conventions and procedures

5.6.1.2.1 DDD/Part 1/2.1 Design standards

These should usually reference methods carried over from the AD
phase and only describe DD phase specific methods.



ESA PSS-05-05 Issue 1 Revision 1 (March 1995) 59
THE DETAILED DESIGN DOCUMENT

The Detailed Design Standard might need to be different if more
than one method or programming language is involved: for example, if some
C language design and programming takes place in an Ada project.

5.6.1.2.2 DDD/Part 1/2.2 Documentation standards

This section should describe the format, style, and tools adopted by
the project for DD and code documentation. Headers, footers, section
formats and typefaces should be specified. They may be prepared as word
processor template files, for automatic inclusion in all project documents. If
the formats are new, they should be prototyped and reviewed (with users in
the case of the SUM).

 This section should contain the standard module header and
contain instructions for its completion (see Section 2.3.9).

5.6.1.2.3 DDD/Part 1/2.3 Naming conventions

This section should explain all naming conventions used, and draw
attention to any points a maintenance programmer would not expect. A
table of the file types and the permitted names or extensions for each is
recommended for quick reference. See the examples in Table 5.6.1.2.3 and
Section 5.6.2.1.
File Type Name Extension
document <<mnemonic>> .DOC
Ada source code IDENTIFIER .ADA
Fortran source code IDENTIFIER .FOR
diagram <<mnemonic>> .PIC

Table 5.6.1.2.3: Names and extensions

Conventions for naming files, programs, modules, and possibly
other structures such as variables and messages, should all be
documented here.

5.6.1.2.4 DDD/Part 1/2.4 Programming standards

This section should define the project programming standards.
Whatever languages or standards are chosen, the aim should be to create a
convenient and easily usable method for writing good-quality software. Note
especially the guidelines in Section 2.3.

 If the programming language is described in an ESA PSS-05 level 3
Guide, then the guidelines described in that document should be adopted.
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Additional restrictions on the use of the language may be imposed if
necessary: such additions should be justified here.

 When programming in any other language, a standard for its use
should be written to provide guidance for programmers. This standard may
be referenced or included here.

 In general, the programming standard should define a consistent
and uniform programming style. Specific points to cover are:
• modularity and structuring;
• headers and commenting;
• indenting and layout;
• library routines to be used;
• language constructs to use;
• language constructs to avoid.

5.6.1.2.5 DDD/Part 1/2.5 Software development tools

This section should list the tools chosen to assist software
development. Normally the list will include:
• a CASE tool;
• a source code editor;
• a compiler;
• a debugger;
• a linker;
• a configuration manager / builder;
• a word processor for documentation;
• a tool for drawing diagrams.

Many projects will also use a configuration management system to
store configuration items, such as documentation, code and test data.

Prototyping projects might make use of an interpretative tool, such
as an incremental compiler/interpreter/debugger.

Other tools that may be helpful to many projects include:
• static analysers;
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• dynamic analysers;
• network and data communication tools;
• graphics packages;
• statistics and mathematical packages.

Real-time and embedded systems may require special
development tools, including:
• cross-compilers;
• diagnostic, logging, and probe tools.

5.6.2 DDD/Part 2 - Component design specifications

The descriptions of the components should be laid out
hierarchically. There should be subsections dealing with the following
aspects of each component:

n Component identifier

n.1 Type
n.2 Purpose
n.3 Function
n.4 Subordinates
n.5 Dependencies
n.6 Interfaces
n.7 Resources
n.8 References
n.9 Processing
n.10 Data

 The number  ‘n' should relate to the place of the component in the
hierarchy.

5.6.2.1 DDD/Part 2/5.n Component Identifier

Each component should have a unique identifier (SCM06) for
effective configuration management. The component should be named
according to the rules of the programming language or operating system to
be used. Where possible, a hierarchical naming scheme should be used
that identifies the parent of the component (e.g. ParentName_ChildName)
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The identifier should reflect the purpose and function of the
component and be brief yet meaningful. If abbreviation is necessary,
abbreviations should be applied consistently and without ambiguity.

Abbreviations should be documented. Component identifiers
should be mutually consistent (e.g. if there is a routine called
READ_RECORD then one might expect a routine called WRITE_RECORD,
not RECORD_WRITING_ROUTINE).

A naming style that clearly distinguishes objects of different classes
is good programming practice. In Pascal, for instance, it is traditional to use
upper case for user-defined types, mixed case for modules, and lower case
for variables, giving the following appearance:
• procedure Count_Chars; {a module}
• type SMALL_INT = 1..255; {a type}
• var count: SMALL_INT; {a variable}

Other styles may be appropriate in other languages. The naming
style should be consistent throughout a project. It is wise to avoid styles that
might confuse maintenance programmers accustomed to standard
industrial practices.

5.6.2.1.1 DDD/Part 2/5.n.1 Type

Component type should be defined by stating its logical and
physical characteristics. The logical characteristics should be defined by
stating the package, library or class that the component belongs to. The
physical characteristics should be defined by stating the type of component,
using the implementation terminology (e.g. task, subroutine, subprogram,
package, file).

 The contents of some component-description sections depend on
the component type. For this guide the categories: executable (i.e. contains
computer instructions) or non-executable (i.e. contains only data) are used.

5.6.2.1.2 DDD/Part 2/5.n.2 Purpose

The purpose of a component should be defined by tracing it to the
software requirements that it implements.

Backward traceability depends upon each component description
explicitly referencing the requirements that justify its existence.
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5.6.2.1.3 DDD/Part 2/5.n.3 Function

The function of a component must be defined in the DDD. This
should be done by stating what the component does.

 The function description depends upon the component type.
Therefore it may be a description of the:
• process;
• information stored or transmitted.

Process descriptions may use such techniques as Structured
English, Precondition-Postcondition specifications and State-Transition
Diagrams.

5.6.2.1.4 DDD/Part 2/5.n.4 Subordinates

The subordinates of a component should be defined by listing the
immediate children. The subordinates of a program are the subroutines that
are  ‘called by' it. The subordinates of a database could be the files that
‘compose' it. The subordinates of an object are the objects that are  ‘used
by' it.

5.6.2.1.5 DDD/Part 2/5.n.5 Dependencies

The dependencies of a component should be defined by listing the
constraints placed upon its use by other components. For example:
• ‘what operations must have taken place before this component is

called?'
• ‘what operations are excluded while this operation is taking place?'
• ‘what operations have to be carried out after this one?'.

5.6.2.1.6 DDD/Part 2/5.n.6 Interfaces

Both control flow and data flow aspects of each interface need to be
specified in the DDD for each  ‘executable' component. Data aspects of
‘non-executable' components should be defined in Subsection 10.

The control flow to and from a component should be defined in
terms of how execution of the component is to be started (e.g. subroutine
call) and how it is to be terminated (e.g. return). This may be implicit in the
definition of the type of component, and a description may not be
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necessary. Control flows may also take place during execution (e.g.
interrupt) and these should be defined, if they exist.

The data flow input to and output from each component must be
detailed in the DDD. Data structures should be identified that:
• are associated with the control flow (e.g. call argument list);
• interface components through common data areas and files.

One component's input may be another's output and to avoid
duplication of interface definitions, specific data components should be
defined and described separately (e.g. files, messages). The interface
definition should only identify the data component and not define its
contents.

The interfaces of a component should be defined by explaining
‘how' the component interacts with the components that use it. This can be
done by describing the mechanisms for:
• invoking or interrupting the component's execution;
• communicating through parameters, common data areas or messages;

If a component interfaces to components in the same system, the
interface description should be defined in the DDD (if not already in the
ADD). If a component interfaces to components in other systems, the
interface description should be defined in an Interface Control Document
(ICD).

5.6.2.1.7 DDD/Part 2/5.n.7 Resources

The resources a component requires should be defined by itemising
what the component needs from its environment to perform its function.
Items that are part of the component interface are excluded. Examples of
resources that might be needed by a component are displays, printers and
buffers.

5.6.2.1.8 DDD/Part 2/5.n.8 References

Explicit references should be inserted where a component
description uses or implies material from another document.
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5.6.2.1.9 DDD/Part 2/5.n.9 Processing

The DDD should describe in detail how processing is carried out.
Algorithms that are fully described elsewhere may be summarised briefly,
provided their sources are properly referenced.

 The processing a component needs to do should be defined by
defining the control and data flow within it. For some kinds of component
(e.g. files) there is no such flow. In practice it is often difficult to separate the
description of function from the description of processing. Therefore a
detailed description of function can compensate for a lack of detail in the
specification of the processing. Techniques of process specification more
oriented towards software design are Program Design Language, Pseudo-
code and Flow Charts.

Software constraints may specify that the processing be performed
using a particular algorithm (which should be stated or referenced).

5.6.2.1.10 DDD/Part 2/5.n.10 Data

The data internal to a component should be defined. The amount of
detail required depends strongly on the type of component. The logical and
physical data structure of files that interface components should have been
defined in the DDD (files and data structures that interface major
components will have been defined in the ADD). The data structures internal
to a program or subroutine should also be specified (contrast the ADD,
where it is omitted).

Data structure definitions must include the:
• description of each element (e.g. name, type, dimension);
• relationships between the elements (i.e. the structure);
• range of possible values of each element;
• initial values of each element.

5.6.3 DDD/Appendix A: Source code listings

This section must contain either:
• listings of the source code, or
• a configuration item list identifying where the source code can be found

(DD12).
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5.6.4 DDD/Appendix B: Software requirements traceability matrix

This section should contain a table that summarises how each
software requirement has been met in the DDD (DD16). The tabular format
permits one-to-one and one-to-many relationships to be shown. A template
is provided in Appendix D.
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CHAPTER 6
 THE SOFTWARE USER MANUAL

6.1 INTRODUCTION

The purpose of the Software User Manual (SUM) is to describe how
to use the software. It should both educate users about what the software
does, and instruct them how to do it. The SUM should combine tutorials and
reference information to meet the needs of both novices and experts. A
Software User Manual (SUM) must be an output of the DD phase (DD17).

The rules for the style and content of the Software User Manual are
based on ANSI/IEEE Std 1063-1987,  ‘Software User Documentation'.

6.2 STYLE

The author of the SUM needs to be aware of the basic rules of clear
writing:
• keep sentences short (e.g. 20 words or less);
• avoid using long words (e.g. 10 letters or more);
• keep paragraphs short (e.g. 10 sentences or less);
• avoid using the passive tense;
• use correct grammar;
• make each paragraph express one point;
• tell the reader what you going to say, say it, and then tell the reader

what you have said.

A grammar checker can help the author obey the first five rules.

The concepts of clarity, consistency and modifiability apply to the
SUM just as much as to the DDD (see Section 5.2). The rest of this section
presents some other considerations that should influence the style of the
SUM.

The SUM should reflect the characteristics of the users. Different
types of users, e.g. end users and operators, will have different needs.
Further, the user's view may change from that of a trainee to expert. The
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authors of the SUM should study the characteristics of the users. The URD
normally contains a summary.

 The SUM should reflect the characteristics of the interface between
he system and the user. Embedded software for controlling an instrument
on board a satellite might have no interface to humans. At the opposite
extreme, a data reduction package might require a large amount of user
interaction, and the SUM might be absolutely critical to the success of the
package.

6.2.1 Matching the style to the user characteristics

Different viewpoints that may need to be addressed are:
• the end user's view;
• the operator's view;
• the trainee's view.

An individual user may hold more than one view.

6.2.1.1 The end user's view

The end user's view takes in every aspect of the use of the system.
The SUM should describe the purpose of the system and should reference
the URD.

 The SUM should contain an overview of the process to be
supported, perhaps making reference to technical information, such as the
underlying physics and algorithms employed. Information should be
presented from the end user's view, not the developer's. Algorithms should
be represented in mathematical form, not in a programming language, for
example. Descriptions should not stray into the workings of the system; they
are in the SUM only to help the end user understand the intention of the
system.

The end user's view is an external view, unconcerned with details of
the implementation. Accordingly, the SUM should give an external view of
the system, with examples of input required from end users, and the results
that would occur (e.g. output). The SUM should place the system in its
working context.
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6.2.1.2 The operator's view

The operator's view focuses on successfully controlling the
software, whether in normal conditions, or when recovering from errors.

From the point of view of the operator, the SUM should contain clear
instructions about each task that has to be performed. In particular:
• instructions should be easy to find;
• instructions should be easy to understand.

Ease of location and understanding are important in emergencies.
Instructions will be easy to find and understand if a regular structure is
adopted for the description of each task.

 Writers should ensure that wrong actions are not accidentally
selected, and that correct or undo actions are possible if the operator makes
a mistake. The SUM should document such corrective actions with
examples.

 Any irreversible actions must be clearly distinguished in the SUM
(and in the system). Typically, the operator will be asked to confirm that an
irreversible action is to be selected. All confirmation procedures must be
explained with examples in the SUM.

6.2.1.3 The trainee's view

A particularly important view is that of the trainee. There are always
users who are not familiar with a system, and they are especially likely to
need the support of a well-written guide or tutorial. Since the first experience
with a system is often decisive, it is just as vital to write a helpful tutorial for
the trainee.

 Every SUM should contain a tutorial section, which should provide
a welcoming introduction to the software (e.g.  ‘Getting Started').

6.2.2 Matching the style to the HCI characteristics

The SUM should reflect the Human Computer Interaction (HCI)
characteristics of the software. This section presents some guidelines for:
• command-driven systems;
• menu-driven systems;
• GUI, WIMPs and WYSIWYG systems;
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• natural language and speech interface systems;
• embedded systems.

6.2.2.1 Command-driven systems

Command-driven systems require the user to type in commands.
The keyboard input is echoed on a screen. Command driven systems are
simple to implement, and are often preferred by expert users.

Command-driven systems can take some time to learn, and the
SUM has a critical role to play in educating the users of the software. A well
thought-out SUM can compensate for a difficult user interface.

The alphanumeric nature of the interaction can be directly
represented in the SUM. For example:

Commentary and instructions,

> user input

system output

should be clearly distinguished from each other.

6.2.2.2 Menu-driven systems

Traditional menu-driven systems present the user with a fixed
hierarchy of menus. The user starts at the top of the tree and moves up and
down the tree. The structure of the menus normally follows the natural
sequence of operations (e.g. OPEN the file first, then EDIT it). Often the left-
most or the top-most item on the menu is what is usually done first.
Sometimes this temporal logic is abandoned in favour of ergonomic
considerations (e.g. putting the most frequently used command first).

The SUM should describe the standard paths for traversing the
menus. The structure of the SUM should follow the natural sequence of
operations, which is normally the menu structure. An index should be
provided to give alphabetical access.

6.2.2.3 Graphical User Interface systems

Graphical User Interfaces (GUI) include Windows, Icons, Mouse
and Pointer (WIMP) and What You See Is What You Get (WYSIWYG) style
interfaces. An aim of their inventors was to make the operation of a system
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so simple and intuitive that the reading of a user manual is unnecessary.
Unfortunately, making information about the system only available through
the system can be very restrictive, and may not support the mode of inquiry
of the user. SUMs separate to the software are always required, no matter
how sophisticated the interface.

SUMs for a GUI should not assume basic GUI skills. They should
instruct the user how to operate the interface and should describe what the
user looks at and  ‘feels'. Pictures and diagrams of the behaviour should be
given, so that the reader is left in no doubt about what the intended
behaviour is. This is especially important when the user does not have
access to the system when reading the tutorial.

6.2.2.4 Natural-language and speech interface systems

Natural-language and speech interfaces are coming into use. Unlike
menu-driven systems and WIMPs, WYSIWYG and GUI type systems, the
options are not normally defined on a screen. There may be many options.

For natural language and speech interface systems, the SUM
should provide:
• a full list of facilities, explaining their purposes and use;
• examples showing how the facilities relate to each other;
• a list of useful command verbs and auxiliary words for each facility;
• a clear statement of types of sentence that are NOT recognised.

6.2.2.5 Embedded systems

Software that is embedded within a system may not require any
human interaction at the software level. Nevertheless a SUM must be
supplied with the software and provide at least:
• an overview;
• error messages;
• recovery procedures.

6.3 EVOLUTION

The development of the SUM should start as early as possible.
Establishing the potential readership for the SUM should be the first step.
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This information is critical for establishing the style of the document. Useful
information may be found in the section  ‘User Characteristics' in the URD.

The Software Configuration Management Plan defines a formal
change process to identify, control, track and report projected changes
when they are first identified. Approved changes to the SUM must be
recorded by inserting document change records and a document status
sheet at the start of the document.

The SUM is an integral part of the software. The SUM and the rest of
the software must evolve in step. The completeness and accuracy of the
SUM should be reviewed whenever a new release of the software is made.

6.4 RESPONSIBILITY

Whoever writes the SUM, the responsibility for it must be the
developer's. The developer should nominate people with proven authorship
skills to write the SUM.

6.5 MEDIUM

Traditionally, manuals have been printed as books. There are
substantial advantages to be gained from issuing manuals in machine-
readable form. Implementers should consider whether their system would
benefit from such treatment. Two possibilities are:
• online help;
• hypertext.

There should be specific requirements in the URD and SRD for
online help and hypertext, since their implementation can absorb both
computer resources (e.g. storage) and development effort.

6.5.1 Online help

Information in the SUM may be used to construct an  ‘online help'
system. Online help has the advantages of always being available with the
system, whereas paper manuals may be mislaid. Three possibilities, in order
of increasing desirability are:
• a standalone help system, not accessible from inside the
• application;
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• an integrated help system, accessible from within the application;
• an integrated, context-sensitive help system, that gives the help

information about the task being carried out.

In the last option, the user should be able to continue the search for
help outside the current context (e.g. to get background information).

6.5.2 Hypertext

A hypertext is a structure of pages of text or graphics (and
sometimes of other media). Pages are linked by keywords or phrases. For
example, the word  ‘file' might give access to a page containing the words
‘store',  ‘search', and  ‘retrieve'; in turn, each of these might give access to a
page explaining a command within the documented system. Keywords may
be displayed as text (usually highlighted), or may be indicated by icons or
regions of a diagram which respond to a pointing device (such as a mouse).

Hypertext readily accommodates the hierarchical structure of most
programs, but it can equally represent a network of topics linked by arbitrary
connections.

 This gives hypertext the advantage of a richer pattern of access
than printed text, which is inherently linear (despite hypertext-like helps, such
as indexes).

 Hypertext is also good for guided tours, which simulate the
operation of the program, while pointing out interesting features and setting
exercises.

 The quality of graphics within a hypertext must enable tables,
charts, graphs and diagrams to be read quickly and without strain. Older
terminals and personal computers may not be suitable for this purpose.
Modern bit-mapped workstations, and personal computers with higher-
resolution graphics cards, rarely cause legibility problems.

 Stand-alone hypertext has the advantage of being simple and safe;
it does not increase the complexity or risk of system software, because it is
not connected directly to it.

 A disadvantage of stand-alone hypertext is that it is not
automatically context-sensitive. On a multitasking operating system, it can
be made context-sensitive by issuing a message from the (documented)
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system to the hypertext mechanism, naming the entry point (for example,
‘file names' or  ‘data display').

 Reliable proprietary hypertext packages are available on many
processors; alternatively, simple hypertext mechanisms can be implemented
by means of a database, a specialised tool, or if necessary a programming
language.

6.6 CONTENT

The recommended table of contents for a SUM is given below. If it is
felt necessary to depart from this structure, implementers should justify any
differences briefly, and if possible preserve the standard section numbering
for easy reference.

 Service Information:
a - Abstract
b - Table of Contents
c - Document Status Sheet
d - Document Change Records made since last issue.

1 INTRODUCTION
1.1 Intended readership
1.2 Applicability statement
1.3 Purpose
1.4 How to use this document
1.5 Related documents (including applicable documents)
1.6 Conventions
1.7 Problem reporting instructions

2 [OVERVIEW SECTION]

(The section ought to give the user a general understanding of what parts of
software provide the capabilities needed)

3 [INSTRUCTION SECTION]

(For each operation, provide...

(a)  Functional description
(b)  Cautions and warnings
(c)  Procedures, including,

- Set-up and initialisation
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 - Input operations
 - What results to expect
 (d) Probable errors and possible causes)

4 [REFERENCE SECTION]

(Describe each operation, including:

(a) Functional description
(b) Cautions and warnings
(c) Formal description, including as appropriate:

- required parameters
 - optional parameters
 - default options
 - order and syntax
 (d) Examples
 (e) Possible error messages and causes
 (f) Cross references to other operations)

 Appendix A Error messages and recovery procedures
 Appendix B Glossary
 Appendix C Index (for manuals of 40 pages or more)

In the instruction section of the SUM, material is ordered according
to the learning path, with the simplest, most necessary operations
appearing first and more advanced, complicated operations appearing later.
The size of this section depends on the intended readership. Some users
may understand the software after a few examples (and can switch to using
the reference section) while other users may require many worked examples.

The reference section of the SUM presents the basic operations,
ordered for easy reference (e.g. alphabetically). Reference documentation
should be more formal, rigorous and exhaustive than the instructional
section. For example a command may be described in the instruction
section in concrete terms, with a specific worked example. The description
in the reference section should describe all the parameters, qualifiers and
keywords, with several examples.

 The overview, instruction, and reference sections should be given
appropriate names by the SUM authors. For example, an orbit modelling
system might have sections separately bound and titled:
• Orbit Modelling System Overview;
• Orbit Modelling System Tutorial;
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• Orbit Modelling System Reference Manual.

At lower levels within the SUM, authors are free to define a structure
suited to the readership and subject matter. Particular attention should be
paid to:
• ordering subjects (e.g. commands, procedures);
• providing visual aids.

 ‘Alphabetical' ordering of subjects acts as a built-in index and
speeds access. It has the disadvantage of separating related items, such as
‘INSERT' and  ‘RETRIEVE'. Implementers should consider which method of
structuring is most appropriate to an individual document. Where a body of
information can be accessed in several ways, it should be indexed and
cross-referenced to facilitate the major access methods.

Another possible method is  ‘procedural' or  ‘step-by-step' ordering,
in which subjects are described in the order the user will execute them. This
style is appropriate for the instruction section.

 Visual aids in the form of diagrams, graphs, charts, tables, screen
dumps and photographs should be given wherever they materially assist the
user. These may illustrate the software or hardware, procedures to be
followed by the user, data, or the structure of the SUM itself.

Implementers may also include illustrations for other purposes. For
example, instructional material may contain cartoons to facilitate
understanding or to maintain interest.

Icons may be used to mark differing types of section, such as
definitions and procedures. All icons should be explained at the start of the
SUM.

6.6.1 SUM\Table of Contents

A table of contents is an important help and should be provided in
every SUM. Short manuals may have a simple list of sections. Manuals over
40 pages should provide a fuller list, down to at least the third level of
subsections (1.2.3, etc). Where the SUM is issued in several volumes, the
first volume should contain a simple table of contents for the entire SUM,
and each volume should contain its own table of contents.

There is no fixed style for tables of contents, but they should
reference page as well as section numbers. Section headings should be
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quoted exactly as they appear in the body of the manual. Subsections may
be indented to group them visually by containing a section.

A convenient style is to link the title to the page number with a
leader string of dots:

 1.2.3 Section Title ...................................................................................... 29

Lists of figures and tables should be provided in manuals with many
of them (e.g. more than twenty).

6.6.2 SUM\1 Introduction

6.6.2.1 SUM\1.1 Intended readership

This section should define the categories of user (e.g. end user and
operator) and, for each category:
• define the level of experience assumed;
• state which sections of SUM are most relevant to their needs.

6.6.2.2 SUM\1.2 Applicability statement

This section should define the software releases that the issue of the
SUM applies to.

6.6.2.3 SUM\1.3 Purpose

This section should define both the purpose of the SUM and the
purpose of the software. It should name the process to be supported by
software and the role of the SUM in supporting that process.

6.6.2.4 SUM\1.4 How to use this document

This section should describe what each section of the document
contains, its intended use, and the relationship between sections.

6.6.2.5 SUM\1.5 Related documents

This section should list related documents and define the
relationship of each document to the others. All document trees that the
SUM belongs to should be defined in this section. If the SUM is a
multivolume set, each member of the set should be separately identified.
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6.6.2.6 SUM\1.6 Conventions

This section should summarise symbols, stylistic conventions, and
command syntax conventions used in the document.

 Examples of stylistic conventions are boldface and Courier Font to
distinguish user input. Examples of syntax conventions are the rules for
combining commands, keywords and parameters, or how to operate a
WIMP interface.

6.6.2.7 SUM\1.7 Problem Reporting Instructions

This section should summarise the procedures for reporting
software problems. ESA PSS-05-0 specifies the problem reporting
procedure [Ref. 1, part 2, section 3.2.3.2.2]. The SUM should not refer users
to ESA PSS-05-0.

6.6.3 SUM\2 Overview Section

This section should give an overview of the software to all users and
summarises:
• the process to be supported to by software;
• the fundamental principles of the process;
• what the software does to support the process;
• what the user needs to supply to the software.

The description of the process to be supported, and its fundamental
principles, may be derived from the URD. It should not use software
terminology.

The software should be described from an external  ‘black box' point
of view. The discussion should be limited to functions, inputs and outputs
that the user sees.

The overview can often become much clearer if a good metaphor is
used for the system. Some GUIs, for example, use the  ‘office system'
metaphor of desk, filing cabinets, folders, indexes etc. Often a metaphor will
have been defined very early in the system development, to help capture the
requirements. The same metaphor can be very useful in explaining the
system to new users.
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6.6.4 SUM\3 Instruction Section

This section should aim to teach new users how to operate the
software. The viewpoint is that of the trainee.

The section should begin by taking the user through short and
simple sessions. Each session should have a single purpose, such as  ‘to
enable the user to edit a data description record'. The sessions should be
designed to accompany actual use of the system, and should contain
explicit references to the user's actions and the system's behaviour. The
trainee should derive a sense of achievement by controlling a practical
session that achieves a result.

 Diagrams, plans, tables, drawings, and other illustrations should be
used to show what the software is doing, and to enable the novice to form a
clear and accurate mental model of the system.

 The tutorial may be structured in any convenient style. It is wise to
divide it into sessions lasting 30-40 minutes. Longer sessions are difficult to
absorb.

A session could have the goal of introducing the user to a set of
‘advanced' facilities in a system. It may not be practical or desirable to
present a whole session. It may be more appropriate to give a  ‘tutorial tour'.
Even so, it is still helpful to fit all the examples into a single framework (e.g.
how to store, search and retrieve).

For each session, this section should provide:

(a) Functional description

A description of what the session is supposed to achieve, in the user's
terms.

(b) Cautions and warnings

A list of precautions that may need to be taken; the user is not concerned
with all possibilities at this stage, but with gaining a working understanding
of some aspect of the system.

(c) Procedures

- set-up and initialisation operations

A description of how to prepare for and start the task;
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- input operations

A step-by-step description what the user must do and a description of the
screens or windows that the system shows in response;

- what results to expect

A description of the final results that are expected.

(d) Likely errors and possible causes

An informal description of the major errors that are possible in this task, and
how to avoid them. The aim is to give the trainee user the confidence to
carry on when problems arise. This section should not simply provide a list
of errors, but should set them in their context.

6.6.5 SUM\4 Reference Section

This section should give comprehensive information about all the
software capabilities. The viewpoint is that of the operator or expert user.

The section should contain a list of operations ordered for easy
access. The order may be alphabetical (e.g. for command-driven systems)
or correspond directly to the structure of the user interface (e.g. for menu-
driven systems).

In contrast to the informal style of the instruction section, the
reference section should be formal, rigorous and exhaustive.

 For each operation, this section should provide:

(a) Functional description

A concise description of what the operation achieves.

(b) Cautions and warnings

A list of cautions and warnings that apply to the operation.

(c) Formal description, including as appropriate:
- required parameters
- optional parameters
- defaults
- syntax & semantics
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Describe precisely what the operation does and how it is used. The means
of doing this should be decided in advance. Syntax may be defined formally
using the Backus-Naur Form (BNF). Semantics may be described by means
of tables, diagrams, equations, or formal language.

(d) Examples

Give one or more worked examples to enable operators to understand the
format at a glance. Commands should be illustrated with several short
examples, giving the exact form of the most common permutations of
parameters and qualifiers in full, and stating what they achieve.

(e) Possible errors and their causes

List all the errors that are possible for this operation and state what causes
each one. If error numbers are used, explain what each one means.

(f) References to related operations

Give references to other operations which the operator may need to
complete a task, and to logically related operations (e.g. refer to RETRIEVE
and DELETE when describing the INSERT operation).

The operations should be described in a convenient order for quick
reference: for example, alphabetically, or in functionally related groups. If the
section is separately bound, then it should contain its own tables of error
messages, glossary, and index; otherwise they should be provided as
appendices to the body of the SUM. These appendices are described
below.

6.6.6 SUM\Appendix A - Error messages and recovery procedures

This section should list all the error messages. It should not simply
repeat the error message: referral to this section means that the user
requires help. For each error message the section should give a diagnosis,
and suggest recovery procedures. For example:

file  ‘TEST.DOC' does not exist.

There is no file called  ‘TEST.DOC' in the current directory and drive. Check that you
are in the correct directory to access this file.

If recovery action is likely to involve loss of data, remind the user
about possible backup or archiving procedures.
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6.6.7 SUM\Appendix B - Glossary

A glossary should be provided if the manual contains terms that
operators are unlikely to know, or that are ambiguous.

 Care should be taken to avoid redefining terms that operators
usually employ in a different sense in a similar context. References may be
provided to fuller definitions of terms, either in the SUM itself or in other
sources.

Pairs of terms with opposite meanings, or groups of terms with
associated meanings, should be cross-referenced within the glossary.
Cross-references may be indicated with a highlight, such as italic type.

List any words used in other than their plain dictionary sense, and
define their specialised meanings.

 All the acronyms used in the SUM should be listed with brief
explanations of what they mean.

6.6.8 SUM\Appendix C - Index

An index helps to make manuals easier to use. Manuals over 40
pages should have an index, containing a systematic list of topics from the
user's viewpoint.

 Indexes should contain major synonyms and variants, especially if
these are well known to users but are not employed in the SUM for technical
reasons. Such entries may point to primary index entries.

 Index entries should point to topics in the body of the manual by:
• page number;
• section number;
• illustration number;
• primary index entry (one level of reference only).

Index entries can usefully contain auxiliary information, especially
cross-references to contrasting or related terms. For example, the entry for
INSERT could say  ‘see also DELETE'.

Indexes can provide the most help to users if attention is drawn
primarily to important keywords, and to important locations in the body of
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the manual. This may be achieved by highlighting such entries, and by
grouping minor entries under major headings. Indexes should not contain
more than two levels of entry.

 If a single index points to different kinds of location, such as pages
and illustration numbers, these should be unambiguously distinguished, e.g.
• page 35
• figure 7

as the use of highlighting (35, 7) is not sufficient to prevent
confusion in this case.
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CHAPTER 7
 LIFE CYCLE MANAGEMENT ACTIVITIES

7.1 INTRODUCTION

DD phase activities must be carried out according to the plans
defined in the AD phase (DD01). These are:
• Software Project Management Plan for the DD phase (SPMP/DD);
• Software Configuration Management Plan for the DD phase

(SCMP/DD);
• Software Verification and Validation Plan for the DD phase (SVVP/DD);
• Software Quality Assurance Plan for the DD phase (SQAP/DD).

Progress against plans should be continuously monitored by
project management and documented at regular intervals in progress
reports.

Plans of TR phase activities must be drawn up in the DD phase.
These plans should cover project management, configuration management,
quality assurance and acceptance tests.

7.2 PROJECT MANAGEMENT PLAN FOR THE TR PHASE

By the end of the DD review, the TR phase section of the SPMP
(SPMP/TR) must be produced (SPM13). The SPMP/TR describes, in detail,
the project activities to be carried out in the TR phase.

 Guidance on writing the SPMP/TR is provided in ESA PSS-05-08,
Guide to Software Project Management.

7.3 CONFIGURATION MANAGEMENT PLAN FOR THE TR PHASE

During the DD phase, the TR phase section of the SCMP
(SCMP/TR) must be produced (SCM48). The SCMP/TR must cover the
configuration management procedures for deliverables in the operational
environment (SCM49).

Guidance on writing the SCMP/TR is provided in ESA PSS-05-09,
Guide to Software Configuration Management.
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7.4 QUALITY ASSURANCE PLAN FOR THE TR PHASE

During the DD phase, the TR phase section of the SQAP (SQAP/TR)
must be produced (SQA10). The SQAP/TR must describe, in detail, the
quality assurance activities to be carried out in the TR phase until final
acceptance in the OM phase (SQA11).

SQA activities include monitoring the following activities:
• management;
• documentation;
• standards, practices, conventions, and metrics;
• reviews and audits;
• testing activities;
• problem reporting and corrective action;
• tools, techniques and methods;
• code and media control;
• supplier control;
• record collection, maintenance and retention;
• training;
• risk management.

Guidance on writing the SQAP/TR is provided in ESA PSS-05-11,
Guide to Software Quality Assurance.

The SQAP/TR should take account of all the software requirements
related to quality, in particular:
• quality requirements;
• reliability requirements;
• maintainability requirements;
• safety requirements;
• verification requirements;
• acceptance-testing requirements.
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The level of monitoring planned for the TR phase should be
appropriate to the requirements and the criticality of the software. Risk
analysis should be used to target areas for detailed scrutiny.

7.5 ACCEPTANCE TEST SPECIFICATION

The developer must construct an acceptance test specification in
the DD phase and document it in the SVVP (SVV17). The specification
should be based on the acceptance test plan produced in the UR phase.
This specification should define the acceptance test:
• designs (SVV19);
• cases (SVV20);
• procedures (SVV21).

Guidance on writing the SVVP/AT is provided in ESA PSS-05-10,
Guide to Software Verification and Validation.
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APPENDIX A
GLOSSARY

Terms used in this document are consistent with ESA PSS-05-0
[Ref. 1] and ANSI/IEEE Std 610.12-1990 [Ref. 2].

A.1 LIST OF ACRONYMS

AD Architectural Design
ADD Architectural Design Document
AD/R Architectural Design Review
ANSI American National Standards Institute
AT Acceptance Test
BSI British Standards Institute
BSSC Board for Software Standardisation and Control
CASE Computer Aided Software Engineering
DD Detailed Design and production
DDD Detailed Design Document
DD/R Detailed Design and production Review
ESA European Space Agency
HCI Human-Computer Interaction
IEEE Institute of Electrical and Electronics Engineers
ISO International Standards Organisation
IT Integration Test
ICD Interface Control Document
JSD Jackson System Development
JSP Jackson Structured Programming
OOA Object-Oriented Analysis
OOD Object-Oriented Design
PA Product Assurance
PDL Program Design Language
PERT Program Evaluation and Review Technique
PSS Procedures, Specifications and Standards
RID Review Item Discrepancy
SADT Structured Analysis and Design Technique
SCM Software Configuration Management
SCMP Software Configuration Management Plan
SCR Software Change Request
SPM Software Project Management
SPMP Software Project Management Plan
SPR Software Problem Report
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SQA Software Quality Assurance
SQAP Software Quality Assurance Plan
SRD Software Requirements Document
ST System Test
SUM Software User Manual
SVVP Software Verification and Validation Plan
TBC To Be Confirmed
TBD To Be Defined
TR Transfer
URD User Requirements Document
UT Unit Test
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APPENDIX C
MANDATORY PRACTICES

This appendix is repeated from ESA PSS-05-0 appendix D.5.
DD01 DD phase activities shall be carried out according to the plans defined in the

AD phase.
The detailed design and production of software shall be based on the
following three principles:

DD02 • top-down decomposition;
DD03 • structured programming;
DD04 • concurrent production and documentation.
DD05 The integration process shall be controlled by the software configuration

management procedures defined in the SCMP.
DD06 Before a module can be accepted, every statement in a module shall be

executed successfully at least once.
DD07 Integration testing shall check that all the data exchanged across an

interface agrees with the data structure specifications in the ADD.
DD08 Integration testing shall confirm that the control flows defined in the ADD

have been implemented.
DD09 System testing shall verify compliance with system objectives, as stated in

the SRD.
DD10 When the design of a major component is finished, a critical design review

shall be convened to certify its readiness for implementation.
DD11 After production, the DD Review (DD/R) shall consider the results of the

verification activities and decide whether to transfer the software.
DD12 All deliverable code shall be identified in a configuration item list.
DD13 The DDD shall be an output of the DD phase.
DD14 Part 2 of the DDD shall have the same structure and identification scheme

as the code itself, with a 1:1 correspondence between sections of the
documentation and the software components.

DD15 The DDD shall be complete, accounting for all the software requirements in
the SRD.

DD16 A table cross-referencing software requirements to the detailed design
components shall be placed in the DDD.

DD17 A Software User Manual (SUM) shall be an output of the DD phase.
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APPENDIX D
 REQUIREMENTS TRACEABILITY MATRIX

REQUIREMENTS TRACEABILITY MATRIX
 DDD TRACED TO SRD

DATE: <YY-MM-DD>
PAGE 1 OF <nn>

PROJECT: <TITLE OF PROJECT>
SRD IDENTIFIER DDD IDENTIFIER SOFTWARE REQUIREMENT
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acceptance tests, 21
Ada, 9, 37
ANSI/IEEE Std 1016-1987, 56
ANSI/IEEE Std 1063-1987, 67
assertions, 18
audits, 86
backtracking, 33, 39
backward chaining, 33
baseline, 44
black box testing, 19
block structuring, 31
bottom-up approach, 42
bottom-up testing, 21
C, 36
C++, 38
CASE tools, 43
change control, 44, 55
COBOL, 35
complexity, 19
configuration management, 43
cyclomatic complexity, 47
data dictionary, 43
DD/R, 1
DD01, 4, 85
DD02, 5
DD03, 14
DD04, 14
DD05, 21
DD06, 20
DD07, 21
DD08, 21
DD09, 21
DD10, 12
DD11, 23
DD12, 21, 65
DD13, 53
DD14, 53, 56
DD15, 53, 56
DD16, 66
DD17, 67
DDD, 3
debuggers, 20
declarative structuring, 32
defects, 22
diagnostic code, 20

driver modules, 42
dynamic analysers, 20
dynamic binding, 32
embedded systems, 22
flowchart, 26
formal review, 23
FORTRAN, 34
forward chaining, 33
header, 16
Horn Clause logic, 39
hypertext, 73
ICD, 64
inheritance, 32
integration testing, 21
Jackson Structured Programming, 29
LISP, 38
media control, 86
messages, 32
methods, 25, 86
metrics, 86
ML, 39
Modula-2, 37
module, 20
online help, 72
Pascal, 36
polymorphism, 32
precompiler, 44
problem reporting, 86
Program Design Language, 28
progress reports, 4, 85
Prolog, 39
prototyping, 11
pseudo-code, 7, 12, 14, 26, 29
quality assurance, 85
recursion, 31
repository, 43
reviews, 86
RID, 23
risk analysis, 87
risk management, 86
SCM06, 61
SCM15, 15
SCM16, 15
SCM17, 15
SCM18, 15
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SCM48, 85
SCM49, 85
SCMP/DD, 85
SCMP/TR, 3, 22, 85
simulators, 22
Smalltalk, 38
SPM13, 85
SPMP/DD, 14, 85
SPMP/TR, 3, 22, 85
SQA, 86
SQA10, 86
SQA11, 86
SQAP/DD, 85
SQAP/TR, 3, 22
stepwise refinement, 26
strong typing, 31
stub modules, 42
SUM, 3, 67
SVV17, 87
SVV19, 14, 87
SVV20, 14, 87
SVV21, 14, 87
SVVP/AT, 3
SVVP/DD, 85
SVVP/IT, 21
SVVP/ST, 22
SVVP/UT, 20
System testing, 21
techniques, 86
test coverage, 50
testing activities, 86
tools, 86
top-down approach, 42
top-down testing, 21
TR phase, 85
traceability, 43
training, 86
unit test, 19
white box testing, 19
word processor, 51


