
ESA PSS-05-08 Issue 1 Revision 1
March 1995

european space agency / agence spatiale européenne
8-10, rue Mario-Nikis, 75738 PARIS CEDEX, France

Guide to
software
project
management

Prepared by:
ESA Board for Software
Standardisation and Control
(BSSC)

Approved by:
The Inspector General, ESA

ii ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
DOCUMENT STATUS SHEET

DOCUMENT STATUS SHEET

DOCUMENT STATUS SHEET

1. DOCUMENT TITLE: ESA PSS-05-08 Guide to Software Project Management

2. ISSUE 3. REVISION 4. DATE 5. REASON FOR CHANGE

1 0 1994 First issue

1 1 1995 Minor updates for publication

Issue 1 Revision 1 approved, May 1995
Board for Software Standardisation and Control
M. Jones and U. Mortensen, co-chairmen

Issue 1 approved, 15th June 1995
Telematics Supervisory Board

Issue 1 approved by:
The Inspector General, ESA

Published by ESA Publications Division,
ESTEC, Noordwijk, The Netherlands.
Printed in the Netherlands.
ESA Price code: E1
ISSN 0379-4059

Copyright © 1995 by European Space Agency

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) iii
TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION.. 1
1.1 PURPOSE ..1
1.2 OVERVIEW...1

CHAPTER 2 SOFTWARE PROJECT MANAGEMENT .. 3
2.1 INTRODUCTION..3
2.2 THE PROJECT MANAGER'S ROLE AND RESPONSIBILITIES.............................4
2.3 PROJECT INTERFACES ..5
2.4 PROJECT PLANNING ..6

2.4.1 Define products8
2.4.2 Define activities... ..8

2.4.2.1 Process model ..8
2.4.2.1.1 Selection of life cycle approach...9
2.4.2.1.2 Tailoring of the phase process models.....................................11
2.4.2.1.3 Selection of methods and tools ..13

2.4.2.2 Work package definition ...14
2.4.3 Estimate resources and duration..18

2.4.3.1 Defining human resources...18
2.4.3.2 Estimating effort ...19
2.4.3.3 Estimating non-labour costs..20
2.4.3.4 Estimating duration ..20

2.4.4 Define activity network..21
2.4.5 Define schedule and total cost ...21

2.5 LEADING THE PROJECT...22
2.6 TECHNICAL MANAGEMENT OF PROJECTS...23
2.7 MANAGEMENT OF PROJECT RISKS ...23

2.7.1 Experience factors ..24
2.7.1.1 Experience and qualifications of the project manager24
2.7.1.2 Experience and qualifications of staff..24
2.7.1.3 Maturity of suppliers...25

2.7.2 Planning factors... ..25
2.7.2.1 Accuracy of estimates..26
2.7.2.2 Short timescales...26
2.7.2.3 Long timescales ...27
2.7.2.4 Single-point failures..27
2.7.2.5 Location of staff..27
2.7.2.6 Definition of responsibilities ...28
2.7.2.7 Staffing profile evolution...28

2.7.3 Technological factors ...28
2.7.3.1 Technical novelty..29

iv ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
TABLE OF CONTENTS

2.7.3.2 Maturity and suitability of methods..29
2.7.3.3 Maturity and efficiency of tools ..29
2.7.3.4 Quality of commercial software ...30

2.7.4 External factors30
2.7.4.1 Quality and stability of user requirements ...30
2.7.4.2 Definition and stability of external interfaces31
2.7.4.3 Quality and availability of external systems...31

2.8 MEASURING PROJECT PROCESSES AND PRODUCTS31
2.8.1 Assess environment and define primary goal ..31
2.8.2 Analyse goals and define metrics..31

2.8.2.1 Process metrics..31
2.8.2.2 Product metrics ..31

2.8.3 Collect metric data and measure performance..31
2.8.4 Improving performance ...31

2.9 PROJECT REPORTING..31
2.9.1 Progress reports . ..31
2.9.2 Work package completion reports...31
2.9.3 Timesheets31

CHAPTER 3 SOFTWARE PROJECT MANAGEMENT METHODS 31
3.1 INTRODUCTION..31
3.2 PROJECT PLANNING METHODS ..31

3.2.1 Process modelling methods ...31
3.2.2 Estimating methods ..31

3.2.2.1 Historical comparison ...31
3.2.2.2 COCOMO. ..31
3.2.2.3 Function Point Analysis...31
3.2.2.4 Activity distribution analysis ..31
3.2.2.5 Delphi method ...31
3.2.2.6 Integration and System Test effort estimation31
3.2.2.7 Documentation effort estimation ...31

3.2.3 Activity network methods ...31
3.2.4 Scheduling presentation methods...31

3.3 PROJECT RISK MANAGEMENT METHODS ...31
3.3.1 Risk table31
3.3.2 Risk matrix31

3.4 PROJECT REPORTING METHODS..31
3.4.1 Progress tables and charts ..31
3.4.2 Milestone trend charts..31

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) v
TABLE OF CONTENTS

CHAPTER 4 SOFTWARE PROJECT MANAGEMENT TOOLS 31
4.1 INTRODUCTION..31
4.2 PROJECT PLANNING TOOLS..31

4.2.1 General purpose project planning tools ..31
4.2.2 Process modelling tools...31
4.2.3 Estimating Tools31

4.3 PROJECT RISK ANALYSIS TOOLS ..31
4.4 PROJECT REPORTING TOOLS..31
4.5 PROCESS SUPPORT TOOLS...31

CHAPTER 5 THE SOFTWARE PROJECT MANAGEMENT PLAN...................... 31
5.1 INTRODUCTION..31
5.2 STYLE...31
5.3 RESPONSIBILITY...31
5.4 MEDIUM ..31
5.5 SERVICE INFORMATION..31
5.6 CONTENTS..31
5.7 EVOLUTION...31

CHAPTER 6 THE SOFTWARE PROJECT PROGRESS REPORT 31
6.1 INTRODUCTION..31
6.2 STYLE...31
6.3 RESPONSIBILITY...31
6.4 MEDIUM ..31
6.5 SERVICE INFORMATION..31
6.6 CONTENTS..31

APPENDIX A GLOSSARY ...A-31
APPENDIX B REFERENCES...B-31
APPENDIX C MANDATORY PRACTICES ... C-31
APPENDIX D PROJECT MANAGEMENT FORMS...D-31
APPENDIX E INDEX ..E-31

vi ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
TABLE OF CONTENTS

This page is intentionally left blank

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) vii
PREFACE

PREFACE

This document is one of a series of guides to software engineering produced by
the Board for Software Standardisation and Control (BSSC), of the European Space
Agency. The guides contain advisory material for software developers conforming to
ESA's Software Engineering Standards, ESA PSS-05-0. They have been compiled from
discussions with software engineers, research of the software engineering literature,
and experience gained from the application of the Software Engineering Standards in
projects.

Levels one and two of the document tree at the time of writing are shown in
Figure 1. This guide, identified by the shaded box, provides guidance about
implementing the mandatory requirements for software project management described
in the top level document ESA PSS-05-0.

Guide to the
Software Engineering

Guide to the
User Requirements

Definition Phase

Guide to
Software Project

Management

PSS-05-01

PSS-05-02 UR Guide
PSS-05-03 SR Guide

PSS-05-04 AD Guide
PSS-05-05 DD Guide

PSS-05-06 TR Guide
PSS-05-07 OM Guide

PSS-05-08 SPM Guide
PSS-05-09 SCM Guide

PSS-05-11 SQA Guide

ESA
Software

Engineering
Standards

PSS-05-0

Standards

Level 1

Level 2

PSS-05-10 SVV Guide

Figure 1: ESA PSS-05-0 document tree

The Guide to the Software Engineering Standards, ESA PSS-05-01, contains
further information about the document tree. The interested reader should consult this
guide for current information about the ESA PSS-05-0 standards and guides.

The following past and present BSSC members have contributed to the
production of this guide: Carlo Mazza (chairman), Gianfranco Alvisi, Michael Jones,
Bryan Melton, Daniel de Pablo and Adriaan Scheffer.

viii ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
PREFACE

The BSSC wishes to thank Jon Fairclough for his assistance in the development
of the Standards and Guides, and to all those software engineers in ESA and Industry
who have made contributions.

Requests for clarifications, change proposals or any other comment concerning
this guide should be addressed to:

BSSC/ESOC Secretariat BSSC/ESTEC Secretariat
Attention of Mr M Jones Attention of Mr U Mortensen
ESOC ESTEC
Robert Bosch Strasse 5 Postbus 299
D-64293 Darmstadt NL-2200 AG Noordwijk
Germany The Netherlands

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 1
INTRODUCTION

CHAPTER 1
INTRODUCTION

1.1 PURPOSE

ESA PSS-05-0 describes the software engineering standards to be
applied for all deliverable software implemented for the European Space
Agency (ESA) [Ref 1].

ESA PSS-05-0 requires that every software project be planned,
organised, staffed, led, monitored and controlled. These activities are called
'Software Project Management' (SPM). Each project must define its Software
Project Management activities in a Software Project Management Plan
(SPMP).

This guide defines and explains what software project management
is, provides guidelines on how to do it, and defines in detail what a Software
Project Management Plan should contain.

This guide should be read by software project managers, team
leaders, software quality assurance managers, senior managers and
initiators of software projects.

1.2 OVERVIEW

Chapter 2 contains a general discussion of the principles of
software project management, expanding upon ESA PSS-05-0. Chapter 3
discusses methods for software project management that can be used to
support the activities described in Chapter 2. Chapter 4 discusses tools for
software project management. Chapter 5 describes how to write the SPMP.
Chapter 6 discusses progress reporting.

All the mandatory practices in ESA PSS-05-0 relevant to software
project management are repeated in this document. The identifier of the
practice is added in parentheses to mark a repetition. This document
contains no new mandatory practices.

2 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
INTRODUCTION

This page is intentionally left blank

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 3
SOFTWARE PROJECT MANAGEMENT

CHAPTER 2
SOFTWARE PROJECT MANAGEMENT

2.1 INTRODUCTION

Software project management is 'the process of planning,
organising, staffing, monitoring, controlling and leading a software project'
[Ref 3]. Every software project must have a manager who leads the
development team and is the interface with the initiators, suppliers and
senior management. The project manager:
• produces the Software Project Management Plan (SPMP);
• defines the organisational roles and allocates staff to them;
• controls the project by informing staff of their part in the plan;
• leads the project by making the major decisions and by motivating staff

to perform well;
• monitors the project by measuring progress;
• reports progress to initiators and senior managers.

SPMP
SCMP
SVVP
SQAP

Make Plans

Make Products

Reports

Products

User Requirements

Standards
for control

for monitoring

Figure 2.1: Management control loop

Figure 2.1 shows the control and monitoring loop required in every
software project. Standards and user requirements are the primary input to
both the planning and production processes. Plans are made for project
management, configuration management, verification and validation and

4 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT

quality assurance. These plans control production. Reports, such as
progress reports, timesheets, work package completion reports, quality
assurance reports and test reports provide feedback to the planning
process. Plans may be updated to take account of these reports.

The project manager is the driving force in the management control
loop. The following sections define the role of the project manager and
discuss project management activities.

2.2 THE PROJECT MANAGER'S ROLE AND RESPONSIBILITIES

When they are appointed, project managers should be given terms
of reference that define their:
• objectives;
• responsibilities;
• limits of authority.

The objective of every project manager is to deliver the product on
time, within budget and with the required quality. Although the precise
responsibilities of a project manager will vary from company to company
and from project to project, they should always include planning and
forecasting. Three additional areas of management responsibility defined by
Mintzberg [Ref 17] are:
• interpersonal responsibilities, which include:

- leading the project team;
- liaising with initiators, senior management and suppliers;
- being the 'figurehead', i.e. setting the example to the project team

and representing the project on formal occasions.
• informational responsibilities, which include:

- monitoring the performance of staff and the implementation of the
project plan;

- disseminating information about tasks to the project team;
- disseminating information about project status to initiators and

senior management;
- acting as the spokesman for the project team.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 5
SOFTWARE PROJECT MANAGEMENT

• decisional responsibilities, which include:
- allocating resources according to the project plan, and adjusting

those allocations when circumstances dictate (i.e. the project
manager has responsibility for the budget);

- negotiating with the initiator about the optimum interpretation of
contractual obligations, with the company management for
resources, and with project staff about their tasks;

- handling disturbances to the smooth progress of the project such
as equipment failures and personnel problems.

2.3 PROJECT INTERFACES

Project managers must identify the people or groups the project
deals with, both within the parent organisation and outside. A project may
have interfaces to:
• initiators;
• end users;
• suppliers;
• subcontractors;
• the prime contractor;
• other subsystem developers.

When defining external project interfaces, the project manager
should:
• ensure that a single, named point of contact exists both within the

project team and each external group;
• channel all communications between the project and external groups

through as few people as possible;
• ensure that no person in the project has to liaise with more than seven

external groups (the 'rule of seven' principle).

6 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT

2.4 PROJECT PLANNING

Whatever the size of the project, good planning is essential if it is to
succeed. The software project planning process is shown in Figure 2.4. The
five major planning activities are:
• define products;
• define activities;
• estimate resources and duration;
• define activity network;
• define schedule and total cost.

This process can be applied to a whole project or to a phase of a
project. Each activity may be repeated several times to make a feasible plan.
In principle, every activity in Figure 2.4 can be linked to the other activities by
'feedback' loops, in which information gained at a later stage in planning is
used to revise earlier planning decisions. These loops have been omitted
from the figure for simplicity. Iteration is essential for optimising the plan.

Define
Products

Define
Activities

Estimate
Resources
& Duration

Define
Activity
Network

Define
Schedule

Standards

URD or
SRD or
ADD

Historical and Supplier Cost Data

Time and Resource Constraints

Process Model

WP[inputs, activities, outputs]

WP[inputs, activities, outputs, resources, duration]

Total Project Duration

WP Start
WP End

Gantt chart

Resource Req's

WP Float

Project organisation

Product Definitions

PERT chart

Risk and Environmental Considerations

Total Cost
& Cost

Figure 2.4: Planning process

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 7
SOFTWARE PROJECT MANAGEMENT

The inputs to software project planning are:
• User Requirements Document (URD), Software Requirements

Document (SRD) or Architectural Design Document (ADD), according
to the project phase;

• software standards for products and procedures;
• historical data for estimating resources and duration;
• supplier cost data;
• risks to be considered;
• environmental factors, such as new technology;
• time constraints, such as delivery dates;
• resource constraints, such as the availability of staff.

The primary output of project planning is the Software Project
Management Plan. This should contain:
• definitions of the deliverable products;
• a process model defining the life cycle approach and the methods and

tools to be used;
• the work breakdown structure, i.e. a hierarchically structured set of work

packages defining the work;
• the project organisation, which defines the roles and reporting

relationships in the project;
• an activity network defining the dependencies between work packages,

the total time for completion of the project, and the float times of each
work package;

• a schedule of the project, defining the start and end times of each work
package;

• a list of the resources required to implement the project;
• a total cost estimate.

The following subsections describe the five major activities.

8 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT

2.4.1 Define products

The first activity in project planning is to define the products to be
delivered. Table 2.4.1 summarises the software products of each phase as
required by ESA PSS-05-0.

Phase Input Product Output Product

SR URD SRD

AD SRD ADD

DD ADD DDD, code, SUM

TR DDD, code, SUM STD

Table 2.4.1: Phase input and output products

While standards define the contents of documents, some
consideration should be given as to how each section of the document will
be prepared. Care should be taken not to overconstrain the analysis and
design process in defining the products. Some consideration should also be
given to the physical characteristics of the products, such as the medium
(e.g. paper or computer file), language (e.g. English, French) or
programming language (in the case of code).

2.4.2 Define activities

Once the products are specified, the next step is to define a
process model and a set of work packages.

2.4.2.1 Process model

A software process model should define the:
• activities in a software development process;
• the inputs and outputs of each activity;
• roles played in each activity.

The software development process must be based upon the ESA
PSS-05-0 life cycle model (SLC03). The key decisions in software process
modelling are the:
• selection of the life cycle approach, i.e. the pattern of life cycle phases;
• modifications, if any, to the phase process models (see below);
• selection of methods and tools to support the activities in the phase

process models.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 9
SOFTWARE PROJECT MANAGEMENT

2.4.2.1.1 Selection of life cycle approach

ESA PSS-05-0 defines three life cycle approaches, waterfall,
incremental and evolutionary.

UR

SR

AD

DD

TR

OM

Figure 2.4.2.1.1A: Waterfall approach

The waterfall approach shown in Figure 2.4.2.1.1A executes each
phase of the life cycle in sequence. Revisiting earlier phases is permitted to
correct errors. The simple waterfall approach is suitable when:
• a set of high quality, stable user requirements exists;
• the length of project is short (i.e. two years or less);
• the users require the complete system all at once.

10 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT

UR

SR

AD

DD

TR

OM

DD

TR

OM

1

2

2

2

1

1

 Figure 2.4.2.1.1B: Incremental approach

The incremental approach to development has multiple DD, TR and
OM phases as shown in Figure 2.4.2.1.1B. This approach can be useful if:
• delivery of the software has to be according to the priorities set on the

user requirements;
• it is necessary to improve the efficiency of integration of the software

with other parts of the system (e.g. the telecommanding and telemetry
subsystems in a spacecraft control system may be required early for
system tests);

• early evidence that products will be acceptable is required.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 11
SOFTWARE PROJECT MANAGEMENT

DEV

OM
1

1

DEV

OM
2

2

OM
3

DEV
3

 Figure 2.4.2.1.1C: Evolutionary approach

The evolutionary approach to development shown in Figure
2.4.2.1.1C consists of multiple waterfall life cycles with overlap between
operations, maintenance and development. This approach may be used if,
for example:
• some user experience is required to refine and complete the

requirements (shown by the dashed line within the OM boxes);
• some parts of the implementation may depend on the availability of

future technology;
• some new user requirements are anticipated but not yet known;
• some requirements may be significantly more difficult to meet than

others, and it is not decided to allow them to delay a usable delivery.

2.4.2.1.2 Tailoring of the phase process models

The process models for the SR, AD and DD phases are shown in
Figure 2.4.2.1.2A, B and C.

12 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT

SCMP/AD

Approved

URD

Examined

URD

Logical

Model

Draft

SRD

Draft

SVVP/ST

Approved
SRD

Examine

URD

Construct

Model

Specify

Req'mnts

Write

Test Plan

SR/R

Write

AD Plans

Accepted RID

CASE tools

Methods

Prototyping

SPMP/AD

SQAP/AD

SVVP/AD

SVVP/ST

SCMP/SR

SPMP/SR

SQAP/SR

SVVP/SR

Figure 2.4.2.1.2A: SR phase process model

SCMP/DD

Approved

SRD

Examined

SRD

Physical

Model

Draft

ADD

Draft

SVVP/IT

Approved
ADD

Examine

SRD

Construct

Model

Specify

Design

Write

Test Plan

AD/R

Write

DD Plans

Accepted RID

CASE tools

Methods

Prototyping

SPMP/DD

SQAP/DD

SVVP/DD

SVVP/IT

SCMP/AD

SPMP/AD

SQAP/AD

SVVP/AD

 Figure 2.4.2.1.2B: AD phase process model

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 13
SOFTWARE PROJECT MANAGEMENT

SCMP/TR

Examined
ADD

Verified
Subsystems

Verified
System

Approved
DDD,SUM

Detail
Design

Write
Test Specs

Code
and test

Integrate
and test

DD/R

Write
TR Plans

Accepted RID

CASE tools
Methods
Prototyping

SPMP/TR

SQAP/TR

SVVP/AT

SCMP/DD
SPMP/DD

SQAP/DD
SVVP/DD

Accepted SPR

code

Test tools

Static Analysers
Dynamic Analysers

Debuggers
CM tools

Draft
SVVP/AT
SVVP/ST
SVVP/IT
SVVP/UT

Draft
DDD
SUM

Examine
ADD

Approved
ADD

Walkthroughs
Inspections

Figure 2.4.2.1.2C: DD phase process model

Project managers should tailor these process models to the needs
of their projects. For example the specification of unit tests often has to wait
until the code has been produced because there is insufficient information to
define the test cases and procedures after the detailed design stage.

Further decomposition of the activities in the phase process models
may be necessary. The granularity of the process model should be such
that:
• managers have adequate visibility of activities at all times;
• every individual knows what to do at any time.

Detailed procedures, which should be part of the development
organisation's quality system, should be referenced in the SPMP. They need
not be repeated in the SPMP.

2.4.2.1.3 Selection of methods and tools

The project manager should, in consultation with the development
team, select the methods and tools used for each activity in the phase
process models. The ESA PSS-05 series of guides contains extensive
information about methods and tools that may be used for software
development [Ref 19].

14 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT

2.4.2.2 Work package definition

The next step in planning is to decompose the work into 'work
packages'. Activities in the process model are instantiated as work package
tasks. The relationship between activities and tasks may be one-to-one (as
in the case of constructing the logical model), or one-to-many (e.g. the code
and unit test activity will be performed in many work packages).

Dividing the work into simple practical work packages requires a
good understanding of the needs of the project and the logical relationships
embedded in the process model. Some criteria for work package design
are:
• coherence; tasks within a work package should have the same goal;
• coupling; work package dependencies should be minimised, so that

team members can work independently;
• continuity; production work packages should be full-time to maximise

efficiency;
• cost; bottom level work packages should require between one man-

week and one man-month of effort.

The level of detail in the work breakdown should be driven by the
level of accuracy needed for estimating resources and duration in the next
stage of planning. This may be too detailed for other purposes, such as
progress reporting to senior management. In such cases the higher level
work packages are used to describe the work.

The work packages should be hierarchically organised so that
related activities, such as software project management, are grouped
together. The hierarchy of work packages is called the 'Work Breakdown
Structure' (WBS). Table 2.4.2.2 shows an example of a WBS for a medium
size project. In this example, each work package has a four digit identifier
allowing up to four levels in the WBS.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 15
SOFTWARE PROJECT MANAGEMENT

1000 Software Project Management
1100 UR phase

1110 SPMP/SR production
1200 SR phase

1210 SPM reports
1220 SPMP/AD production

1300 AD phase
1310 SPM reports
1320 SPMP/DD production

1400 DD phase
1410 SPM reports
1420 SPMP/TR production
1430 SPMP/DD updates

1500 TR phase
1510 SPM reports

2000 Software Production
2100 UR phase

2110 Requirements engineering
2200 SR phase

2210 Logical model
2220 Prototyping
2230 SRD draft
2240 SRD final

2300 AD phase
2310 Physical model
2320 Prototyping
2330 ADD draft
2340 ADD final

2400 DD phase
2410 Unit 1 production

2411 Unit 1 DDD
2412 Unit 1 code
2413 Unit 1 test

2420 Unit 2 production
2421 Unit 2 DDD
2422 Unit 2 code
2423 Unit 2 test

2430 Unit 3 production
2431 Unit 3 DDD
2432 Unit 3 code
2433 Unit 3 test

2440 Unit 4 production
2441 Unit 4 DDD
2442 Unit 4 code
2443 Unit 4 test

2450 Unit 5 production
2451 Unit 5 DDD
2452 Unit 5 code
2453 Unit 5 test

Table 2.4.2.2: Example Work Breakdown Structure

16 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT

2460 Integration and test
2461 Integration stage 1
2462 Integration stage 2
2463 Integration stage 3
2464 Integration stage 4

2470 SUM production
2500 TR phase

2510 Software installation
2520 STD production

3000 Software Configuration Management
3100 UR phase

3110 SCMP/SR production
3200 SR phase

3210 Library maintenance
3220 Status accounting
3230 SCMP/AD production

3300 AD phase
3310 Library maintenance
3320 Status accounting
3330 SCMP/DD production

3400 DD phase
3410 Library maintenance
3420 Status accounting
3430 SCMP/TR production

3500 TR phase
3510 Library maintenance
3520 Status accounting

4000 Software Verification and Validation
4100 UR phase

4110 SVVP/SR production
4120 SVVP/AT plan production
4130 UR review

4200 SR phase
4210 Walkthroughs
4220 Tracing
4230 SR review
4240 SVVP/ST plan production

4300 AD phase
4310 Walkthroughs
4320 Tracing
4330 SR review
4340 SVVP/IT plan production

4400 DD phase
4410 Unit review

4411 Unit 1 Review
4412 Unit 2 Review
4413 Unit 3 Review
4414 Unit 4 Review
4415 Unit 5 Review

Table 2.4.2.2: Example Work Breakdown Structure (continued)

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 17
SOFTWARE PROJECT MANAGEMENT

4420 SVVP/UT production
4430 SVVP/IT production
4440 SVVP/ST production
4450 SVVP/AT production
4460 System tests
4470 DD review

4500 TR phase
4510 Acceptance tests
4520 Provisional Acceptance review

5000 Software Quality Assurance
5100 UR phase

5110 SQAP/SR production
5200 SR phase

5210 SQA reports
5220 SQAP/AD production

5300 AD phase
5310 SQA reports
5320 SQAP/DD production

5400 DD phase
5410 SQA reports
5420 SQAP/TR production

5500 TR phase
5510 SQA reports

Table 2.4.2.2: Example Work Breakdown Structure (continued)

 The number of work packages in a project normally increases with
project size. Small projects (less than two man years) may have less than
ten bottom-level work packages, and large projects (more than twenty man
years) more than a hundred. Accordingly, small projects will use one or two
levels, medium size projects two to four, and large projects four or five.
Medium and large projects may use alphabetic as well as numerical
identifiers.

New work packages should be defined for new tasks that are
identified during a project. The tasks should not be attached to existing,
unrelated, work packages. Some projects find it useful to create an
'unplanned work' package specifically for miscellaneous activities that arise
in every project. However such 'unplanned work' packages should never be
allocated more than a few per cent of the project resources. New work
packages should be defined for tasks that involve significant expenditure.

Work packages are documented in the Work Packages, Schedule
and Budget section of the SPMP (see Chapter 5). Work packages may
reference standards, guidelines and manuals that define how to carry out
the work. An example of a Work Package Description form is given in

18 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT

Appendix D. A form should be completed for every work package. Repetition
of information should be minimised.

2.4.3 Estimate resources and duration

The next steps in planning are:
• defining human resources;
• estimating effort;
• estimating non-labour costs;
• estimating duration.

2.4.3.1 Defining human resources

Project managers should analyse the work packages and define the
'human resource requirements'. These define the roles required in the
project. Examples of software project roles are:
• project manager;
• team leader;
• programmer;
• test engineer;
• software librarian;
• software quality assurance engineer.

The project manager must also define the relationships between the
roles to enable the effective coordination and control of the project. The
following rules should be applied when defining organisational structures:
• ensure that each member of the team reports to one and only one

person (the 'unity of command principle');
• ensure that each person has no more than seven people reporting

directly to him or her (the 'rule of seven' principle).

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 19
SOFTWARE PROJECT MANAGEMENT

Senior
Manager

Company
QA

Project
Manager

Team
Leader

Software
Librarian

SQA
Engineer

Software
Engineers

Company management

Project team

 Figure 2.4.3.1.1: Example organigram for a medium-size project

The project team structure should be graphically displayed in an
organigram, as shown in Figure 2.4.3.1.1. The 'dotted line' relationship
between the project SQA engineer and the Company QA is a violation of the
'unity-of-command' principle that is justified by the need to provide senior
management with an alternative, independent view on quality and safety
issues.

The senior manager normally defines the activities of the project
manager by means of terms of reference (see Section 2.2). The project
manager defines the activities of the project team by means of work
package descriptions.

2.4.3.2 Estimating effort

The project manager, with the assistance of his team, and, perhaps,
external experts, should make a detailed analysis of the work packages and
provide an estimate of the effort (e.g. number of man hours, days or
months) that will be required.

Where possible these estimates should be compared with historical
data. The comparison method can work quite well when good historical data
exist. Historical data should be adjusted to take account of factors such as

20 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT

staff experience, project risks, new methods and technology and more
efficient work practices.

Formula approaches such as Boehm's Constructive Cost Model
(COCOMO) and Function Point Analysis (FPA) should not be used for
making estimates at this stage of planning. These methods may be used for
verifying the total cost estimate when the plan has been made. These
methods are further discussed in Chapter 3.

2.4.3.3 Estimating non-labour costs

Non-labour costs are normally estimated from supplier data. They
may include:
• commercial products that form part of the end product;
• commercial products that are used to make the end-product but do not

form part of it, e.g. tools;
• materials (i.e. consumables not included in overheads);
• internal facilities (e.g. computer and test facilities);
• external services (e.g. reproduction);
• travel and subsistence;
• packing and shipping;
• insurance.

2.4.3.4 Estimating duration

The duration of the work package may be calculated from effort
estimates and historical productivity data or other practical considerations
(e.g. the duration of an activity such as a review meeting might be fixed at
one day). The duration of each work package is needed for building the
activity network and calculating the total project duration in the next stage of
planning.

Productivity estimates should describe the average productivity and
not the maximum productivity. Studies show that miscellaneous functions
can absorb up to about 50% of staff time [Ref 10], reducing the average
productivity to much less than the peak. Furthermore, industrial productivity
figures (such as the often quoted productivity range of 10 to 20 lines of code
per day) are normally averaged over the whole development, and not just
the coding stage.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 21
SOFTWARE PROJECT MANAGEMENT

2.4.4 Define activity network

An activity network represents the work packages in the project as a
set of nodes with arrows linking them. A sequence of arrows defines a path,
or part of a path, through the project. Circular paths are not allowed in an
activity network. The primary objective of building an activity network is to
design a feasible pattern of activities that takes account of all dependencies.
Two important by-products of constructing the activity network are the:
• critical path;
• work package float.

The critical path is the longest path through the network in terms of
the total duration of activities. The time to complete the critical path is the
time to complete the project.

The float time of a work package is equal to the difference between
the earliest and latest work package start (or end) times, and is the amount
of time each activity can be moved without affecting the total time to
complete the project. Activities on the critical path therefore have zero float
time.

In general, activity networks should only include work packages that
depend upon other work packages for input, or produce output for other
work packages to use.

Activities that are just connected to the start and end nodes should
be excluded from the network. This simplifies it without affecting the critical
path. Further, the activity network of complex projects should be broken
down into subnetworks (e.g. one per phase). Such a modular approach
makes the project easier to manage, understand and evaluate.

2.4.5 Define schedule and total cost

The last stage of planning defines the schedule and resource
requirements, and finally the total cost.

The activity network constrains the schedule but does not define it.
The project manager has to decide the actual schedule by setting the start
and end times of work packages so as to:
• comply with time and resource constraints;
• minimise the total cost;
• minimise the fragmentation of resource allocations;

22 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT

• allow for any risks that might delay the project.

The start and end dates of work packages affected by time
constraints (e.g. delivery dates) and resource constraints (e.g. staff and
equipment availability) should be set first, as they reduce the number of
possibilities to consider. If the total time to complete the project violates the
time constraints, project managers should return to the define activities
stage, redefine work packages, re-estimate resources and duration, and
then modify the activity network.

The minimum total cost of the project is the sum of all the work
packages. However labour costs should be calculated from the total
amount of time spent by each person on the project. This ensures that the
time spent waiting for work packages to start and end is included in the cost
estimate. Simply summing the individual costs of each bottom-level work
package excludes this overhead. Project managers adjust the schedule to
bring the actual cost of the project as close as possible to the minimum.

Activities with high risk factors should be scheduled to start at their
earliest possible start times so that the activity float can be used as
contingency.

Minimising the fragmentation of a resource allocation is often called
'resource smoothing'. Project managers should adjust the start time of
activities using the same resource so that it is used continuously, rather than
at discrete intervals. This is because:
• interruptions mean that people have to refamiliarise with the current

situation, or relearn procedures that have been forgotten;
• equipment may be charged to the project even when it is not in use.

2.5 LEADING THE PROJECT

Leadership provides direction and guidance to the project team,
and is an essential management function. There are numerous studies on
leadership in the management literature, and the interested reader should
consult them directly.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 23
SOFTWARE PROJECT MANAGEMENT

2.6 TECHNICAL MANAGEMENT OF PROJECTS

Besides the managerial issues, a software project manager must
also understand the project technically. He or she is responsible for the
major decisions concerning:
• the methods and tools;
• the design and coding standards;
• the logical model;
• the software requirements;
• the physical model;
• the architectural design;
• the detailed design;
• configuration management;
• verification and validation;
• quality assurance.

In medium and large projects the project manager often delegates
much of the routine technical management responsibilities to team leaders.

2.7 MANAGEMENT OF PROJECT RISKS

All projects have risks. The point about risk management is not to
run away from risks, but to reduce their ability to threaten the success of a
project. Project managers should manage risk by:
• continuously looking out for likely threats to the success of the project;
• adjusting the plan to minimise the probability of the threats being

realised;
• defining contingency plans for when the threats are realised;
• implementing the contingency plans if necessary.

Risk management never starts from the optimistic premise that 'all
will go well'. Instead project managers should always ask themselves 'what
is most likely to go wrong?' This is realism, not pessimism.

Project plans should identify the risks to a project and show how the
plan takes account of them.

24 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT

The following sections discuss the common types of risk to software
projects, with possible actions that can be taken to counteract them. There
are four groups:
• experience factors;
• planning factors;
• technology factors;
• external factors.

2.7.1 Experience factors

Experience factors that can be a source of risk are:
• experience and qualifications of the project manager;
• experience and qualifications of staff;
• maturity of suppliers.

2.7.1.1 Experience and qualifications of the project manager

The project manager is the member of staff whose performance has
a critical effect on the outcome of a project. Inexperienced project managers
are a significant risk, and organisations making appointments should match
the difficulty of the project to the experience of the project manager. Part-
time project managers are also a risk, because this reduces the capability of
a project to respond to problems quickly.

Project management is a discipline like any other. Untrained project
managers are a risk because they may be unaware of what is involved in
management. Staff moving into management should receive training for
their new role.

Project management should be the responsibility of a single person
and not be divided. This ensures unity of command and direction.

2.7.1.2 Experience and qualifications of staff

Staff will be a risk to a project if they have insufficient experience,
skills and qualifications for the tasks that they are assigned.

Project managers should avoid such risks by:
• assessing staff before they join the project;

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 25
SOFTWARE PROJECT MANAGEMENT

• allocating staff tasks that match their experience, skills and
qualifications;

• retaining staff within the project who have the appropriate skills,
experience and qualifications to cope with future tasks.

2.7.1.3 Maturity of suppliers

The experience and record of suppliers are key factors in assessing
the risks to a project. Indicators of maturity are the:
• successful development of similar systems;
• use of software engineering standards;
• the possession of an ISO 9000 certificate;
• existence of a software process improvement programme.

Experience of developing similar systems is an essential
qualification for a project team. Lack of experience results in poor estimates,
avoidable errors, and higher costs (because extra work is required to correct
the errors).

Standards not only include system development standards such as
ESA PSS-05-0, but also coding standards and administrative standards.
Standards may exist within an organisation but ignorance of how best to
apply them may prevent their effective use. Project managers should ensure
that standards are understood, accepted and applied. Project managers
may require additional support from software quality assurance staff to
achieve this.

A software process improvement programme is a good sign of
maturity. Such a programme should be led by a software process group that
is staffed with experienced software engineers. The group should collect
data about the current process, analyse it, and decide about improvements
to the process.

2.7.2 Planning factors

Planning factors that can be a source of risk are:
• accuracy of estimates;
• short timescales;
• long timescales;
• single-point failures;

26 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT

• location of staff;
• definition of responsibilities;
• staffing profile evolution.

2.7.2.1 Accuracy of estimates

Accurate estimates of resource requirements are needed to
complete a project successfully. Underestimates are especially dangerous if
there is no scope for awarding additional resources later. Overestimation
can result in waste and can prevent resources from being deployed
elsewhere.

Some of the activities which are often poorly estimated for are:
• testing;
• integration, especially of external systems;
• transfer phase;
• reviews, including rework.

Some contingency should always be added to the estimates to
cater for errors. The amount of contingency should also be related to the
other risks to the project. Estimating the effort required to do something new
is particularly difficult.

2.7.2.2 Short timescales

Short timescales increase the amount of parallel working required,
resulting in a larger team. Progressive reduction in the timescale increases
this proportion to a limit where the project becomes unmanageable [Ref 9].
Project managers should not accept unrealistic timescales.

Project managers should avoid artificially contracting timescales by
attempting to deliver software before it is required. They should use the time
available to optimise the allocation of resources such as staff.

When faced with accumulating delays and rapidly approaching
deadlines, project manager's should remember Brooks' Law: 'adding
manpower to a late project makes it later' [Ref 10].

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 27
SOFTWARE PROJECT MANAGEMENT

2.7.2.3 Long timescales

Projects with long timescales run the risk of:
• changes in requirements;
• staff turnover;
• being overtaken by technological change.

Long timescales can result from starting too early. Project
managers should determine the optimal time to start the project by careful
planning.

Long projects should consider using an incremental delivery or
evolutionary development life cycle approach. Both approaches aim to
deliver some useful functionality within a timescale in which the requirements
should be stable. If this cannot be done then the viability of the project
should be questioned, as the product may be obsolete or unwanted by the
time it appears.

Ambitious objectives, when combined with constraints imposed by
annual budgets, often cause projects to have long timescales. As
management costs are incurred at a fixed rate, management consumes a
larger proportion of the project cost as the timescale lengthens.
Furthermore, change, such as technical and economic change, can make
the objectives obsolete, resulting in the abandonment of the project before
anything is achieved!

2.7.2.4 Single-point failures

A single-point failure occurs in a project when a resource vital to an
activity fails and there is no backup. Project managers should look for
single-point failures by examining each activity and considering:
• the reliability of the resources;
• whether backup is available.

Project managers should devise contingency plans to reallocate
resources when failures occur.

2.7.2.5 Location of staff

Dispersing staff to different locations can result in poor
communication. Project managers should co-locate staff in contiguous

28 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT

accommodation wherever possible. This improves communication and
allows for more flexible staff allocation.

2.7.2.6 Definition of responsibilities

Poor definition of responsibilities is a major threat to the success of
a project. Vital jobs may not be done simply because no-one was assigned
to do them. Tasks may be repeated unnecessarily because of ignorance
about responsibilities.

Projects should be well organised by defining project roles and
allocating tasks to the roles. Responsibilities should be clearly defined in
work package descriptions.

2.7.2.7 Staffing profile evolution

Rapid increases in the number of staff can be a problem because
new staff need time to familiarise themselves with a project. After the start of
the project much of the project knowledge comes from the existing staff.
These 'teaching resources' limit the ability of a project to grow quickly.

Rapid decreases in the number of staff can be a problem because
the loss of expertise before the project is finished can drastically slow the
rate at which problems are solved. When experienced staff leave a project,
time should be set aside for them to transfer their knowledge to other staff.

The number of staff on a software project should grow smoothly
from a small team in the software requirements definition phase to a peak
during coding and unit testing, and fall again to a small team for the transfer
phase. Project managers avoid sudden changes in the manpower profile
and ensure that the project can absorb the inflow of staff without disruption.

2.7.3 Technological factors

Technological factors that can be a source of risk are:
• technical novelty;
• maturity and suitability of methods;
• maturity and efficiency of tools;
• quality of commercial software.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 29
SOFTWARE PROJECT MANAGEMENT

2.7.3.1 Technical novelty

Technical novelty is an obvious risk. Project managers should
assess the technical novelty of every part of the design. Any radically new
component can cause problems because the:
• feasibility has not been demonstrated;
• amount of effort required to build it will be difficult to estimate

accurately.

Project managers should estimate the costs and benefits of
technically novel components. The estimates should include the costs of
prototyping the component.

Prototyping should be used to reduce the risk of technical novelty.
The cost of prototyping should be significantly less than the cost of
developing the rest of the system, so that feasibility is demonstrated before
major expenditure is incurred. More accurate cost estimates are an added
benefit of prototyping.

2.7.3.2 Maturity and suitability of methods

New methods are often immature, as practical experience with a
method is necessary to refine it. Furthermore, new methods normally lack
tool support.

Choosing an unsuitable method results in unnecessary work and,
possibly, unsuitable software. Analysis and design methods should match
the application being built. Verification and validation methods should match
the criticality of the software.

Project managers should evaluate the strengths (e.g. high
suitability) and the weaknesses (e.g. lack of maturity) of a method before
making a choice. Project managers should always check whether the
method has been used for similar applications.

2.7.3.3 Maturity and efficiency of tools

Tools can prove to be a hindrance instead of a benefit if:
• staff have not been trained in their use;
• they are unsuitable for the methods selected for the project;
• they are changed during the project;

30 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT

• they have more overheads than manual techniques.

The aim of using tools is to improve productivity and quality. Project
managers should carefully assess the costs and benefits of tools before
deciding to use them on a project.

2.7.3.4 Quality of commercial software

The use of proven commercial software with well-known
characteristics is normally a low-risk decision. However, including new
commercial software, or using commercial software for the first time in a
new application area, can be a risk because:
• it may not work as advertised, or as expected;
• it may not have been designed to meet the quality, reliability,

maintainability and safety requirements of the project;

New commercial software should be comprehensively evaluated as
early as possible in the project so that surprises are avoided later. Besides
the technical requirements, other aspects to evaluate when considering the
acquisition of commercial software are:
• supplier size, capability and experience;
• availability of support;
• future development plans.

2.7.4 External factors

External factors that can be a source of risk are the:
• quality and stability of user requirements;
• definition and stability of external interfaces;
• quality and availability of external systems.

2.7.4.1 Quality and stability of user requirements

A project is unlikely to succeed without a high quality User
Requirements Document. A URD is a well-defined baseline against which to
measure success. Project managers should, through the User
Requirements Review process, ensure that a coherent set of requirements is
available. This may require resources very early in the project to help users
define their requirements (e.g. prototyping).

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 31
SOFTWARE PROJECT MANAGEMENT

2.7.4.2 Definition and stability of external interfaces

External interfaces can be a risk when their definitions are unstable,
poorly defined or non-standard.

Interfaces with external systems should be defined in Interface
Control Documents (ICDs). These are needed as early as possible because
they constrain the design. Once agreed, changes should be minimised, as a
change in an interface implies rework by multiple teams.

Standard interfaces have the advantage of being well-defined and
stable. For these reasons a standard interface is always to be preferred,
even if the system design has to be modified.

2.7.4.3 Quality and availability of external systems

External systems can be a problem if their quality is poor or if they
are not available when required either owing to late delivery or to unreliability.

Project managers should initiate discussions with suppliers of
external systems when the project starts. This ensures that suppliers are
made aware of project requirements as early as possible. Project managers
should allocate adequate resources to the integration of external systems.

The effects of late delivery of the external system can be mitigated
by:
• adding the capability of temporarily 'bypassing' the external system;
• development of software to simulate the external system.

The cost of the simulator must be traded-off against the costs
incurred by late delivery.

2.8 MEASURING PROJECT PROCESSES AND PRODUCTS

Project managers should as far as possible adopt a quantitative
approach to measuring software processes and products. This is essential
for effective project control, planning future projects and improving the
software development process in the organisation.

32 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT

The Application of Metrics in Industry (AMI) guide [Ref 18] describes
the following measurement steps:
1. assess the project environment and define the primary goals (e.g.

financial targets, quality, reliability etc);
2. analyse the primary goals into subgoals that can be quantitatively

measured and define a metric (e.g. man-months of effort) for each
subgoal;

3. collect the raw metric data and measure the performance relative to the
project goals;

4. improve the performance of the project by updating plans to correct
deviations from the project goals;

5. improve the performance of the organisation by passing the metric data
and measurements to the software process improvement group, who
are responsible for the standards and procedures the project uses.

Steps one to four are discussed in the following sections.

2.8.1 Assess environment and define primary goal

The purpose of assessing the environment is to understand the
context of the project. An audit aimed at measuring conformance to ESA
PSS-05-0 is one means of assessment. Other methods for assessing
software development organisations and projects include the Software
Engineering Institute’s Capability Maturity Model [Ref 4] and the European
Software Institute’s ‘BOOTSTRAP’ model, which uses the ESA Software
Engineering Standards as a definition of basic practices. Whatever the
approach taken, the assessment step should define what is needed and
what is practical.

The primary software project goal is invariably to deliver the product
on time, within budget, with the required quality.

2.8.2 Analyse goals and define metrics

Common subgoals related to the primary goal are:
• do not exceed the planned effort on each activity;
• do not exceed the planned time on each activity;
• ensure that the product is complete;
• ensure that the product is reliable.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 33
SOFTWARE PROJECT MANAGEMENT

A metric is a 'quantitative measure of the degree to which a system,
component or process possesses a given attribute' [Ref 2]. Project
managers should define one or more metrics related to the subgoals
defined for the project. Metric definitions should as far as possible follow
organisational standards or industry standards, so that comparisons with
other projects are possible [Ref 18].

2.8.2.1 Process metrics

Possible metrics for measuring project development effort are the:
• amount of resources used;
• amount of resources left.

Possible metrics for measuring project development time are the:
• actual duration of activities in days, weeks or months;
• slippage of activities (actual start - planned start).

Possible metrics for measuring project progress are:
• number of work packages completed;
• number of software problems solved.

2.8.2.2 Product metrics

The amount of product produced can be measured in terms of:
• number of lines of source code produced, excluding comments;
• number of modules coded and unit tested;
• number of function points implemented [Ref 11, 15];
• number of pages of documentation written.

Actual values should be compared with target values to measure
product completeness.

Possible metrics for measuring product reliability are:
• test coverage;
• cyclomatic complexity of source modules;
• integration complexity of programs;
• number of critical Software Problem Reports;
• number of non-critical Software Problem Reports;
• number of changes to products after first issue or release.

34 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT

2.8.3 Collect metric data and measure performance

Project managers should ensure that metric data collection is a
natural activity within the project. For example the actual effort expended
should always be assessed before a Work Package is signed off as
completed. Counts of Software Problem Reports should be accumulated in
the Configuration Status Accounting process. Cyclomatic complexity can be
a routine measurement made before code inspection or unit test design.

2.8.4 Improving performance

Metric data should be made available for project management
reporting, planning future projects, and software process improvement
studies [Ref 4].

The project manager should use the metric data to improve
processes and products. For example:
• comparisons of predicted and actual effort early in a project can quickly

identify deficiencies in the initial estimates, and prompt major replanning
of the project to improve progress;

• analysis of the trends in software problem occurrence during integration
and system testing can show whether further improvement in quality
and reliability is necessary before the software is ready for transfer.

2.9 PROJECT REPORTING

Accurate and timely reporting is essential for the control of a project.
Project managers report to initiators and senior managers by means of
progress reports. Initiators and senior managers should analyse progress
reports and arrange regular meetings with the project manager to review the
project. The progress report is an essential input to these management
reviews.

Project managers should have frequent discussions with team
members so that they are always up-to-date with project status. Team
members should formally report progress to project managers by means of
work package completion reports and timesheets.

2.9.1 Progress reports

Project managers should submit routine (e.g. monthly) progress
reports that describe:

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 35
SOFTWARE PROJECT MANAGEMENT

• technical status;
• resource status;
• schedule status;
• problems;
• financial status.

Progress reports are discussed in detail in Chapter 6.

2.9.2 Work package completion reports

As each work package is completed, the responsible team member
(called the 'work package manager') should notify the project manager by a
'work package completion report'. Project managers accept work package
deliverables by issuing 'work package completion certificates'. One way to
document this process is to add completion and acceptance fields to the
work package description form.

2.9.3 Timesheets

Organisations should have a timesheet system that project
managers can use for tracking the time spent by staff on a project. A
timesheet describes what each employee has done on a daily or hourly
basis during the reporting period. The project manager needs this data to
compile progress reports.

 A good timesheet system should allow staff to record the work
package associated with the expenditure of effort, rather than just the
project. This level of granularity in the record keeping eases the collection of
data about project development effort, and provides a more precise
database for estimating future projects.

36 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT

This page is intentionally left blank

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 37
SOFTWARE PROJECT MANAGEMENT METHODS

CHAPTER 3
SOFTWARE PROJECT MANAGEMENT METHODS

3.1 INTRODUCTION

Various methods and techniques are available for software project
management. This chapter discusses some methods for the activities
described in Chapter 2. The reader should consult the references for
detailed descriptions. Methods are discussed for:
• project planning;
• project risk management;
• project reporting.

3.2 PROJECT PLANNING METHODS

Methods are available for supporting the following project planning
activities:
• process modelling;
• estimating resources and duration;
• defining activity networks;
• defining schedules.

The following sections discuss these methods.

3.2.1 Process modelling methods

The objective of a process modelling method is to construct a
model of the software process roles, responsibilities, activities, inputs and
outputs. This is often referred to as the 'workflow'.

Process models have been traditionally defined using text or simple
diagrams. The Software Lifecycle Model defined in Part 1, Figure 1.2 of ESA
PSS-05-0 is an example. Process models have also been defined using
notations derived from systems analysis. SADT diagrams can be used for
illustrating the flow of products and plans between activities [Ref 6].

Specialised process modelling methods based upon programming
languages, predicate logic and Petri Nets are recent developments in

38 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT METHODS

software engineering [Ref 7]. These methods allow dynamic modelling of
the software process. Dynamic models are required for workflow support.

3.2.2 Estimating methods

Chapter 2 recommends that labour costs of each work package be
estimated mainly by expert opinion. The total labour cost is calculated from
the total time spent on the project by each team member. The non-labour
costs are then added to get the cost to completion of the project. The labour
cost estimates should be verified by using another method. This section
discusses the alternative methods of:
• historical comparison;
• COCOMO;
• function point analysis;
• activity distribution analysis;
• Delphi methods;
• integration and system test effort estimation;
• documentation effort estimation.

Some of these methods use formulae. Anyone using formula
approaches to software cost estimation should take note of the following
statement from Albrecht, the originator of Function Point Analysis [Ref 11]:

 "It is important to distinguish between two types of work-effort
estimates, a primary or 'task analysis' estimate and a 'formula' estimate. The
primary work-effort estimate should always be based on an analysis of the
tasks , thus providing the project team with an estimate and a work plan... It
is recommended that formula estimates be used only to validate and
provide perspective on primary estimates".

Boehm gives similar advice, which is all too often ignored by users
of his COCOMO method [Ref 9].

3.2.2.1 Historical comparison

The historical comparison method of cost estimation is simply to
compare the current project with previous projects. This method can work
quite well when:
• the costs of the previous projects have been accurately recorded;
• the previous project has similarities to those of the current project.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 39
SOFTWARE PROJECT MANAGEMENT METHODS

If the projects are all identical, then a simple average of the costs
can be used. More commonly, minor differences between the projects will
lead to a range of actual costs. Estimates can be made by identifying the
most similar project, or work package.

Historical comparisons can be very useful for an organisation which
develops a series of similar systems, especially when accounts are kept of
the effort expended upon each work package. There is no substitute for
experience. However, possible disadvantages of the approach are that:
• new methods and tools cannot be accounted for in the estimates;
• inefficient work practices are institutionalised, resulting in waste.

 To avoid these problems, it is very important that special features of
projects that have influenced the cost are documented, enabling software
project managers to adjust their estimates accordingly.

Part of the purpose of the Project History Document (PHD) is to
pass on the cost data and the background information needed to
understand it.

3.2.2.2 COCOMO

The Constructive Cost Model (COCOMO) is a formula-based
method for estimating the total cost of developing software [Ref 9]. The
fundamental input to COCOMO is the estimated number of lines of source
code. This is its major weakness because:
• the number of lines of code is only accurately predictable at the end of

the architectural design phase of a project, and this is too late;
• what constitutes a 'line of code' can vary amongst programming

languages and conventions;
• the concept of a line of code does not apply to some modern

programming techniques, e.g. visual programming.

COCOMO offers basic, intermediate and detailed methods. The
basic method uses simple formulae to derive the total number of man
months of effort, and the total elapsed time of the project, from the
estimated number of lines of code.

The intermediate method refines the basic effort estimate by
multiplying it with an 'effort adjustment factor' derived from fifteen 'effort
multipliers'. Wildly inaccurate estimates can result from a poor choice of
effort multiplier values. COCOMO supplies objective criteria to help the

40 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT METHODS

estimator make a sensible choice. The detailed COCOMO method uses a
separate set of effort multipliers for every phase.

When estimating by means of COCOMO, the intermediate method
should be used because the detailed method does not appear to perform
more accurately than the intermediate method. The basic method provides
a level of accuracy that is only adequate for preliminary estimates.

3.2.2.3 Function Point Analysis

Function Point Analysis (FPA) estimates the cost of a project from
the estimates of the delivered functionality [Ref 11, 13]. FPA can therefore be
applied at the end of the software requirements definition phase to make
cost estimates. The method combines quite well with methods such as
structured analysis, and has been used for estimating the total effort
required to develop an information system.

The FPA approach to cost estimation is based upon counting the
numbers of system inputs, outputs and data stores. These counts are
weighted, combined and then multiplied by cost drivers, resulting in a
'Function Point' count. The original version of FPA converts the number of
function points to lines of code using a language dependent multiplier. The
number of lines of code is then fed into COCOMO (see Section 3.2.2.2) to
calculate the effort and schedule.

Mark Two Function Point Analysis simplifies the original approach,
is more easily applicable to modern systems, and is better calibrated [Ref
15]. Furthermore it does not depend upon the use of language-dependent
multipliers to produce an effort estimate. When estimating by means of FPA,
the Mark Two version should be used.

3.2.2.4 Activity distribution analysis

Activity distribution analysis uses measurements of the proportion of
effort expended on activities in previous projects to:
• derive the effort required for each activity from the total effort;
• verify that the proportion of effort expended upon each activity is

realistic;
• verify that the effort required for future activities is in proportion to the

effort expended upon completed activities.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 41
SOFTWARE PROJECT MANAGEMENT METHODS

Project phases are the top-level activities in a project. The activity
distribution technique is called the 'phase per cent method' when it is used
to estimate the amount of effort required for project phases.

The activity distribution method requires data about completed
projects to be analysed and reduced to derive the relative effort values. As
with all methods based upon historical data, the estimates need to be
adjusted to take account of factors such as staff experience, project risks,
new methods and technology and more efficient work practices. For
example the use of modern analysis and design methods and CASE tools
requires a higher proportion of effort to be expended in the SR and AD
phases.

3.2.2.5 Delphi method

The 'Delphi' method is a useful approach for arriving at software
cost estimates [Ref 9]. The assumption of the Delphi method is that experts
will independently converge on a good estimate.

The method requires several cost estimation experts and a
coordinator to direct the process. The basic steps are:
1. the coordinator presents each expert with a specification and a form

upon which to record estimates;
2. the experts fill out forms anonymously, explaining their estimates (they

may put questions to the coordinator, but should not discuss the
problem with each other);

3. if consensus has not been achieved, the coordinator prepares a
summary of all the estimates and distributes them to the experts and
the process repeats from step 1.

The summary should just give the results, and not the reasoning
behind the results.

A common variation is to hold a review meeting after the first pass
to discuss the independent estimates and arrive at a common estimate.

3.2.2.6 Integration and System Test effort estimation

Integration and system test effort depends substantially upon the:
• number and criticality of defects in the software after unit testing;
• number and criticality of defects acceptable upon delivery;

42 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT METHODS

• number and duration of integration and system tests;
• average time to repair a defect.

The effort required for integration and system testing can therefore
be estimated from a model of the integration and testing process,
assumptions about the number of defects present after unit tests, and an
estimate of the mean repair effort per defect [Ref 14].

A typical integration and test process model contains the following
cycle:
1. the integration and test team adds components, discovers defects, and

reports them to the software modification team;
2. the software modification team repairs the defects;
3. the integration and test team retests the software.

Reference 14 states that twenty to fifty defects per 1000 lines of
code typically occur during the life cycle of a software product, and of these,
five to fifteen defects per 1000 lines of code remain when integration starts,
and one to four defects per 1000 lines of code still exist after system tests.

Repair effort values will vary very widely, but a mean value of half a
man-day for a code defect is typical.

3.2.2.7 Documentation effort estimation

Software consists of documentation and code. Documentation is a
critical output of software development, not an overhead. When estimating
the volume of software that a project should produce, project managers
should define not only the amount of code that will be produced, but also
the amount of documentation.

Boehm observes that the documentation rates vary between two
and four man hours per page [Ref 9]. Boehm also observes that the ratio
between code volume and documentation volume ranges from about 10 to
about 150 pages of documentation per 1000 lines of code, with a median
value of about 50. These figures apply to all the life cycle documents.

The average productivity figure of 20 lines of code per day includes
the effort required for documentation. This productivity figure, when
combined with the documentation rates given above, implies that software
engineers spend half their time on documentation (i.e. the median of 50
pages of documentation per 1000 lines of code implies one page of

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 43
SOFTWARE PROJECT MANAGEMENT METHODS

documentation per 20 lines of code; one page of documentation requires
four hours, i.e. half a day, of effort).

3.2.3 Activity network methods

The Program Evaluation and Review Technique (PERT) is the usual
method for constructing an activity network [Ref 9]. Most planning tools
construct a PERT chart automatically as the planner defines activities and
their dependencies.

M1

4330
4420

2411
4411

M2

2412

M3

2461

M4

2462

4440

2470

4460
4450

1420
3430
5420
4470

M5

DDD complete

SVVP/IT production
SVVP/UT plan

Unit 1 DDD
Unit 1 review

Integration stage 1 end

Unit 1 code

Integration stage 2 end

Integration stage 1

Integration stage 3 end

Integration stage 2

SVVP/ST production

SUM production

System test
SVVP/AT production

SPMP/TR production
SCMP/TR production
SQAP/TR production
DD review

Integration stage 4 end

ID Name Duration

20d
5d

20d
5d

20d

20d
20d

20d

20d

20d
10d

5d
5d
5d
3d

Month
1 2 3 4 5 6 7 8 9 10 11 12Scheduled Start

17/03

02/01
02/01

02/01
30/01

28/04

06/02

26/05

03/04

23/06

01/05

30/01

10/04

24/07
08/05

22/05
26/06
03/07
21/08

21/07

MilestoneID Date

M6 DD phase end 28/08

2413 06/03Unit 1 test
2421
4412
2422

Unit 2 DDD
Unit 2 review
Unit 2 code

20d
5d

20d

02/01
30/01
06/02

2423 06/03Unit 2 test
2431
4413
2432

Unit 3 DDD
Unit 3 review
Unit 3 code

20d
5d

20d

02/01
06/02
13/02

2433 13/03Unit 3 test
2441
4414
2442

Unit 4 DDD
Unit 4 review
Unit 4 code

20d
5d

20d

02/01
06/02
13/02

2443 13/03Unit 4 test
2451
4415
2452

Unit 5 DDD
Unit 5 review
Unit 5 code

20d
5d

20d

13/02
13/03
20/03

2453 17/04Unit 5 test

2463
2464

Integration stage 3
Integration stage 4

20d
20d

29/05
26/06

20d

20d

20d

20d

20d

 Figure 3.2.4: Example Gantt chart for the DD phase of a project

3.2.4 Scheduling presentation methods

The project schedule defines the start times and duration of each
work package and the dates of each milestone. The 'Gantt chart' is the usual

44 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT METHODS

method for presenting it. Work packages are marked on a vertical axis and
time along the corresponding horizontal axis. Work package activities are
shown as horizontal bars (giving rise to synonym of 'bar chart'). Time may
be expressed absolutely or relative to the start of the phase.

Figure 3.2.4 shows the schedule for DD phase of the example
project described in Chapter 2. Planning tools normally construct the Gantt
chart automatically as tasks are defined.

3.3 PROJECT RISK MANAGEMENT METHODS

Two simple and effective methods for risk management are:
• risk table;
• risk matrix.

3.3.1 Risk table

The steps of the risk table method are :
1. list the risks in the project:
2. define the probability of each risk;
3. define the risk reduction action or alternative approach;
4. define the decision date;
5. define the possible impact.

An example is provided in Table 3.3.1.

Risk Description Prob. Action Decision Date Impact

1 New user
requirements

High Change to
evolutionary
development

1/Jun/1997 High

2 Installation of
air
conditioning

Medium Relocate staff
while work is
done

1/April/1998 Medium

Table 3.3.1: Example of a Risk Table

3.3.2 Risk matrix

The steps of the risk matrix method are:
1. list the risks in the project:

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 45
SOFTWARE PROJECT MANAGEMENT METHODS

2. define the probability of each risk;
3. define the possible impact;
4. plot the risks according to their probability and impact.

An example is provided in Figure 3.3.2, using the data in the risk
table in Figure 3.3.1. Risks with high probability and high impact cluster in
the top right hand corner of the matrix. These are the risks that should
receive the most attention.

high 1

probability medium 2
low

low medium high

impact

Figure 3.3.2: Example of a Risk Matrix

46 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT METHODS

3.4 PROJECT REPORTING METHODS

Some important methods for progress reporting are:
• progress tables
• progress charts;
• milestone trend charts.

3.4.1 Progress tables and charts

Progress tables and charts are used to report how much has been
spent on each work package and how much remains to be spent. For each
work package in the WBS an initial estimate of the resources is made. The
initial estimates should be in the SPMP. At the end of every reporting period,
the following parameters are collected:
1. previous estimate;
2. expenditure for this period;
3. cumulative expenditure up to the end of the reporting period;
4. estimate to completion.

The sum of three and four generates the new estimate, i.e. item one
for the following month. The estimate to completion should be re-evaluated
each reporting period and not obtained by subtracting the cumulative
expenditure from the previous estimate.

Work package expenditure should be summarised in progress
tables as shown in Table 3.4.1. Work package identifiers and names are
listed in columns one and two. The estimate for the work package in the
current SPMP is placed in column three. Subsequent columns contain, for
each month, the values of the previous estimate (PrEst), expenditure for the
period (ExpP), cumulative expenditure (Cum) and estimate to completion
(ToGo). The total in the last column states the current estimated effort for the
work package.

Table 3.4.1 shows that the effort required for work packages 2210
and 2220 was underestimated. This underestimate of 10 man days for WP
2210 was detected and corrected in January. The estimate for WP 2220 had
to be revised upwards by 5 man days in January and increased again by
another 5 man days in February.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 47
SOFTWARE PROJECT MANAGEMENT METHODS

WPid Name Plan January February March Total

PrEst ToGo PrEst ToGo PrEst ToGo

ExpP Cum Exp Cum Exp Cum

2210 Logical 20 20 10 30 0 30 0 30

Model 20 20 10 30 0 30

2220 Prototype 30 30 15 35 5 40 0 40

20 20 15 35 5 40

2230 SRD 20 20 20 20 10 20 0 20

draft 0 0 10 10 10 20

2240 SRD 5 5 5 5 5 5 0 5

final 0 0 0 0 5 5

2200 SR phase 75 75 50 90 20 95 0 95

total 40 40 35 75 20 95

Table 3.4.1: Example Progress Table for March

Progress charts plot the estimates against time. They are best used
for summarising the trends in the costs of high level work packages. Figure
3.4.1 is an example of a plot showing the trends in the estimates for WP
2200.

Jan Feb Mar Apr Month

WP2200

25

50

75

100

Figure 3.4.1: Example of a Progress Chart

48 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT METHODS

The construction of progress tables and charts every reporting
period enables:
• the accuracy of estimates to be measured;
• the degree of completion of each work package to be assessed.

The process of assessing every month what has been
accomplished and re-estimating what remains is essential for keeping good
control of project resources. Overspend trends are revealed and pinpointed
early enough for timely corrective action to be taken.

3.4.2 Milestone trend charts

Milestone trend charts are used to report when milestones have
been, or will be, achieved. First, an initial estimate of each milestone date is
made. This estimate is put in the schedule section of the SPMP. Then, at the
end of every reporting period, the following data are collected:
1. previous estimates of milestone achievement dates;
2. new estimate of milestone achievement dates.

The dates should be plotted in a milestone trend chart to illustrate
the changes, if any, of the dates. A sample form is provided in Appendix D.

A milestone trend chart for the example project described in Figure
3.4.1 is shown in Figure 3.4.2. The vertical scale shows that the reporting
period is one month. Figure 3.4.2 shows the status after five months.
Milestones M1 and M2 have been achieved on schedule. Milestones M3,
M4 and M5 have been slipped one month because 'Integration stage 2' took
one month longer than expected. Milestone M6, the end of phase, was
slipped two months when it was announced that the simulator required for
system testing was going to be supplied two months late. Complaints to the
supplier resulted in the delivery date being brought forward a month. M6
then moved forward one month.

The example shows how vertical lines indicate that the project is
progressing according to schedule. Sloping lines indicate changes.
Milestone trend charts are a powerful tool for understanding what is
happening in a project. A milestone that slips every reporting period
indicates that a serious problem exists.

Milestone trend charts should show milestone dates relative to the
current approved plan, not obsolete plans. They should be reinitialised when
the SPMP is updated.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 49
SOFTWARE PROJECT MANAGEMENT METHODS

M1

M2

M3

M4

M5

M6

Milestone

Month

key to milestones and dates

DDD complete

Integration stage 1 end

Integration stage 2 end

Integration stage 3 end

17/03

28/04

26/05

23/06

21/07Integration stage 4 end

28/08DD phase end

M1 M2

1 2 3 4 5 6 7 8 9 10 11 12

Month 1

Update
Month

Plan

Month 2

M3 M5 M6

Month 3

Month 4

Month 5

Month 6

Month 7

Month 8

Month 9

Month 10

Month 11

Month 12

Plan date Plan month

3

4

5

6

7

8

M4

Figure 3.4.2: Milestone trend chart for the DD phase of a project

50 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT METHODS

This page is intentionally left blank.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 51
SOFTWARE PROJECT MANAGEMENT TOOLS

CHAPTER 4
SOFTWARE PROJECT MANAGEMENT TOOLS

4.1 INTRODUCTION

This chapter discusses tool support for the methods described in
chapters 2 and 3. Tools are available for project planning, project risk
analysis, project reporting and process support.

4.2 PROJECT PLANNING TOOLS

As well as the general purpose project planning tools that support
activity definition, PERT and scheduling, specialised project planning tools
are available for constructing process models and estimating software
project costs.

4.2.1 General purpose project planning tools

General purpose project planning tools normally support:
• defining work packages;
• defining resources;
• defining resource availability;
• allocating resources to work packages;
• defining the duration of work packages;
• constructing activity networks using the PERT method;
• defining the critical path;
• defining the schedule in a Gantt chart.

Managers enter the project activities and define the resources that
they require. They then mark the dependencies between the activities. The
tool constructs the activity network and Gantt chart. The tools should also
include the ability to:
• compute the total amount of resources required;
• provide resource utilisation profiles;
• fix the duration of an activity;
• divide a project into subprojects;
• highlight resource conflicts, or over-utilisation;
• integrate easily with word processors.

52 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT TOOLS

Common deficiencies of general purpose project planning tools are:
• fixed rate scheduling, so that work packages have to be split when

someone takes a holiday;
• inability to handle fractional allocations of resources (e.g. resource

conflicts occur when staff have to share their time between concurrent
work packages);

• identifiers that change every time a new work package is inserted;
• too much line crossing in activity networks.

Advanced project planning tools permit variable rate scheduling.
The project manager only needs to define:
• the total effort involved in the work package;
• the resources to be allocated to the work package;
• the availability of the allocated resources.

The project planning tool then decides what the resource utilisation
profile should be.

4.2.2 Process modelling tools

Process modelling methods are relatively new, and the tools that
support them are consequently immature. Process modelling tools should:
• support the definition of procedures;
• contain a library of 'process templates' that can be tailored to each

project;
• make the process model available to a process support tool (see

Section 4.5).

There are few dedicated software process modelling tools. Analysis
tools that support the structured analysis techniques of data flow diagrams
and entity relationship diagrams can be effective substitutes.

4.2.3 Estimating Tools

Project costs should be stored in a spreadsheet or database for
access during software cost estimating. Project managers estimate by
comparing their project with those in the database and extracting the cost
data for the most similar project.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 53
SOFTWARE PROJECT MANAGEMENT TOOLS

Some software cost estimation tools use measurements of software
size (e.g. number of lines of code, number of function points) to produce the
initial estimate of effort. They then accept estimates of cost drivers (e.g.
required reliability, programmer experience) and use them to adjust the initial
estimate.

In addition, software cost estimation tools may:
• permit 'what-if' type exploration of costs and timescales;
• produce estimates of the optimum timescale;
• allow input of a range of values instead of a single value, thereby

enabling the accuracy to be estimated;
• provide explanations of how estimates were arrived at;
• provide estimates even when some information is absent;
• allow predicted values to be replaced by actual values, thereby allowing

progressive refinement of an estimate as the project proceeds;
• permit backtracking to an earlier point in the cost estimation process

and subsequent input of new data.

4.3 PROJECT RISK ANALYSIS TOOLS

Risk analysis tools have been applied in other fields, but difficulties
in accurately quantifying software risks limits their usefulness.

One approach to risk analysis is to use heuristics or
'rules-of-thumb', derived from experience. Tools are available that have been
programmed with the rules related to the common risks to a project. The
tools ask a series of questions about the project and then report the most
likely risks. Tools of this kind have rarely been used in software development.

4.4 PROJECT REPORTING TOOLS

Project planning tools (see Section 4.2) that are capable of
recording the actual resources used, and the dates that events occurred,
can be useful for progress reporting. Such tools should use the information
to:
• mark up the Gantt chart to indicate schedule progress;
• constrain replanning.

54 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
SOFTWARE PROJECT MANAGEMENT TOOLS

Spreadsheets are useful for constructing progress tables and
charts.

4.5 PROCESS SUPPORT TOOLS

Process support tools help guide, control and automate project
activities [Ref 8]. They need a formally defined process model in a suitable
machine readable format. The absence of complete software process
models has limited the application of process support tools.

Process support tools may be integrated into the software
engineering environment, coordinating the use of other software tools and
guiding and controlling developers through the user interface [Ref 5].
Outside software engineering, process support tools have been used for
controlling the work flow in a business process.

Process support tools should provide the following capabilities:
• instantiation of the process model;
• enactment of each process model instance (i.e. the process support

tool should contain a 'process engine' that drives activities)
• viewing of the process model instance status.

In addition process support tools should provide:
• interfaces between the process model instance and the actors (i.e. the

people playing the project roles);
• interfaces to project planning tools so that coverage of the plan, and the

resource expenditure, can be tracked.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 55
THE SOFTWARE PROJECT MANAGEMENT PLAN

 CHAPTER 5
THE SOFTWARE PROJECT MANAGEMENT PLAN

5.1 INTRODUCTION

All software project management activities must be documented in
the Software Project Management Plan (SPMP) (SPM01). The SPMP is the
controlling document for managing a software project.

The SPMP contains four sections dedicated to each development
phase. These sections are called:
• Software Project Management Plan for the SR phase (SPMP/SR);
• Software Project Management Plan for the AD phase (SPMP/AD);
• Software Project Management Plan for the DD phase (SPMP/DD);
• Software Project Management Plan for the TR phase (SPMP/TR).

Each section of the SPMP must:
• define the project organisation (SPM01);
• define the managerial process (SPM01);
• outline the technical approach, in particular the methods, tools and

techniques (SPM01);
• define the work-breakdown structure (SPM01, SPM10);
• contain estimates of the effort required to complete the project (SPM01,

SPM04, SPM06, SPM07, SPM09);
• contain a planning network describing when each work package will be

started and finished (SPM01, SPM11);
• allow for the risks to the project (SPM01).

The table of contents for each section of the SPMP is described in
Section 5.6. This table of contents is derived from the IEEE Standard for
Software Project Management Plans (ANSI/IEEE Std 1058.1-1987).

5.2 STYLE

The SPMP should be plain, concise, clear, consistent and
modifiable.

56 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
THE SOFTWARE PROJECT MANAGEMENT PLAN

5.3 RESPONSIBILITY

The developer is normally responsible for the production of the
SPMP. The software project manager should write the SPMP.

5.4 MEDIUM

It is usually assumed that the SPMP is a paper document. There is
no reason why the SPMP should not be distributed electronically to people
with the necessary equipment.

5.5 SERVICE INFORMATION

The SR, AD, DD and TR sections of the SPMP are produced at
different times in a software project. Each section should be kept separately
under configuration control and contain the following service information:

 a - Abstract
 b - Table of Contents
 c - Document Status Sheet
 d - Document Change records made since last issue

5.6 CONTENTS

 ESA PSS-05-0 recommends the following table of contents for each
phase section of the SPMP:

1 Introduction
1.1 Project overview
1.2 Project deliverables
1.3 Evolution of the SPMP
1.4 Reference materials
1.5 Definitions and acronyms

2 Project Organisation
2.1 Process model
2.2 Organisational structure
2.3 Organisational boundaries and interfaces
2.4 Project responsibilities

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 57
THE SOFTWARE PROJECT MANAGEMENT PLAN

3 Managerial Process
3.1 Management objectives and priorities
3.2 Assumptions, dependencies and constraints
3.3 Risk management
3.4 Monitoring and controlling mechanisms
3.5 Staffing plan

4 Technical Process
4.1 Methods, tools and techniques
4.2 Software documentation
4.3 Project support functions

5 Work Packages, Schedule, and Budget
5.1 Work packages
5.2 Dependencies
5.3 Resource requirements
5.4 Budget and resource allocation
5.5 Schedule

Material unsuitable for the above contents list should be inserted in
additional appendices. If there is no material for a section then the phrase
'Not Applicable' should be inserted and the section numbering preserved.

5.6.1 SPMP/1 Introduction

5.6.1.1 SPMP/1.1 Project overview

This section of the SPMP should provide a summary of the project:
• objectives;
• deliverables;
• life cycle approach;
• major activities;
• milestones;
• resource requirements;
• schedule;
• budget.

This section outlines the plan for whole project and must be
provided in the SPMP/SR (SPM01). The overview may be updated in
subsequent phases.

58 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
THE SOFTWARE PROJECT MANAGEMENT PLAN

5.6.1.2 SPMP/1.2 Project deliverables

This section should list the deliverables of the phase. All ESA PSS-
05-0 documents, plans and software releases that will be delivered should
be listed. Any other deliverable items such as prototypes, demonstrators
and tools should be included.

5.6.1.3 SPMP/1.3 Evolution of the SPMP

This section should summarise the history of the SPMP in this and
previous phases of the project.

This section should describe the plan for updating the SPMP in this
and subsequent phases of the project.

5.6.1.4 SPMP/1.4 Reference materials

This section should provide a complete list of all the applicable and
reference documents, identified by title, author and date. Each document
should be marked as applicable or reference. If appropriate, report number,
journal name and publishing organisation should be included.

5.6.1.5 SPMP/1.5 Definitions and acronyms

This section should provide the definitions of all terms, acronyms,
and abbreviations used in the plan, or refer to other documents where the
definitions can be found.

5.6.2 SPMP/2 Project Organisation

5.6.2.1 SPMP/2.1 Process model

This section should define the activities in the phase and their inputs
and outputs. The definition should include the major project functions (i.e.
activities that span the entire duration of the project, such as project
management, configuration management, verification and validation, and
quality assurance) and the major production activities needed to achieve the
objectives of the phase. The definition of the process model may be textual
or graphic.

5.6.2.2 SPMP/2.2 Organisational structure

This section should describe the internal management structure of
the project in the phase. Graphical devices such as organigrams should be
used to show the lines of reporting, control and communication.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 59
THE SOFTWARE PROJECT MANAGEMENT PLAN

Roles that often appear in the internal management structure are:
• project manager;
• team leader;
• programmers;
• software librarian;
• software quality assurance engineer.

5.6.2.3 SPMP/2.3 Organisational boundaries and interfaces

This section should describe the relationship between the project
and external groups during the phase such as:
• parent organisation;
• client organisation;
• end users;
• subcontractors;
• suppliers;
• independent verification and validation organisation;
• independent quality assurance organisations.

The procedures and responsibilities for the control of each external
interface should be summarised. For example:
• name of Interface Control Document (ICD);
• those responsible for the agreement of the ICD;
• those responsible for authorising the ICD.

5.6.2.4 SPMP/2.4 Project responsibilities

This section should define the roles identified in the organisational
structure and its boundaries. Each role definition should briefly describe the
purpose of the role and list the responsibilities.

5.6.3 SPMP/3 Managerial process

5.6.3.1 SPMP/3.1 Management objectives and priorities

This section should define the management objectives of this
project phase and their relative priorities. They should discuss any trade-offs
between the objectives.

60 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
THE SOFTWARE PROJECT MANAGEMENT PLAN

5.6.3.2 SPMP/3.2 Assumptions, dependencies and constraints

This section should state for the phase the:
• assumptions on which the plan is based;
• external events the project is dependent upon;
• constraints on the project.

Technical issues should only be mentioned if they have an effect on
the plan.

Assumptions, dependencies and constraints are often difficult to
distinguish. The best approach is not to categorise them but to list them. For
example:
• limitations on the budget;
• schedule constraints (e.g. launch dates);
• constraints on the location of staff (e.g. they must work at developer's

premises);
• commercial hardware or software that will be used by the system;
• availability of simulators and other test devices;
• availability of external systems with which the system must interface.

5.6.3.3 SPMP/3.3 Risk management

This section of the plan should identify and assess the risks to the
project, and describe the actions that will be taken in this phase to manage
them. A risk table (see Section 3.3.1) may be used.

5.6.3.4 SPMP/3.4 Monitoring and controlling mechanisms

This section of the plan should define the monitoring and controlling
mechanisms for managing the work. Possible monitoring and controlling
mechanisms are:
• work package descriptions;
• work package completion reports;
• progress reports;
• reviews;
• audits.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 61
THE SOFTWARE PROJECT MANAGEMENT PLAN

This section should define or reference the formats for all
documents and forms used for monitoring and controlling the project.

This section should specify the:
• frequency of progress meeting with initiators and management;
• frequency of submission of progress reports;
• modifications (if any) to the progress report template provided in

Chapter 6;
• general policy regarding reviews and audits (the details will be in the

SVVP).

5.6.3.5 SPMP/3.5 Staffing plan

This section of the plan should specify the names, roles and grades
of staff that will be involved in the phase. The utilisation of the staff should be
given for each reporting period. A staff profile giving the total number of staff
on the project each month may also be given.

5.6.4 SPMP/4 Technical Process

5.6.4.1 SPMP/4.1 Methods, tools and techniques

This section should specify the methods, tools and techniques to
be used to produce the phase deliverables.

5.6.4.2 SPMP/4.2 Software documentation

This section should define or reference the documentation plan for
the phase. For each document to be produced, the documentation plan
should specify:
• document name;
• review requirements;
• approval requirements.

Some documents will be deliverable items. Others will be internal
documents, such as technical notes, or plans, such as the SCMP. All
documents should be listed.

The documentation plan may contain or reference a 'style' guide
that describes the format and layout of documents.

62 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
THE SOFTWARE PROJECT MANAGEMENT PLAN

5.6.4.3 SPMP/4.3 Project support functions

This section should contain an overview of the plans for the project
support functions of:
• software configuration management;
• software verification and validation;
• software quality assurance.

This section should reference the SCMP, SVVP and SQAP.

5.6.5 SPMP/5 Work Packages, Schedule, and Budget

5.6.5.1 SPMP/5.1 Work packages

This section should describe the breakdown of the phase activities
into work packages.

This section may begin with a Work Breakdown Structure (WBS)
diagram to describe the hierarchical relationships between the work
packages. Each box should show the title and identifier of the work
package. Alternatively, the work breakdown may be described by listing the
work package titles and identifiers as shown in Section 2.4.2.2.

 The full Work Package Descriptions may be contained in this
section or put in an appendix. Each Work Package description should define
the:
• work package title;
• work package reference number;
• responsible organisation;
• major constituent activity;
• work package manager;
• start event;
• end event;
• inputs;
• activities;
• outputs.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 63
THE SOFTWARE PROJECT MANAGEMENT PLAN

Work packages should be defined for all activities, including project
functions such as project management, configuration management,
verification and validation and quality assurance.

5.6.5.2 SPMP/5.2 Dependencies

This section should define the ordering relations between the work
packages. This may be done by using a planning network technique, such
as the Program Evaluation and Review Technique (PERT), to order the
execution of work packages according to their dependencies (see Section
3.5). Dependency analysis should define the critical path to completion of
the project and derive the 'float' for activities off the critical path.

5.6.5.3 SPMP/5.3 Resource requirements

This section should describe, for each work package:
• the total resource requirements;
• the resource requirements as a function of time.

Labour resources should be evaluated in man-hours, man-days or
man-months. Other resources should be identified (e.g. equipment).

5.6.5.4 SPMP/5.4 Budget and resource allocation

The project budget allocation should be specified by showing how
the available financial resources will be deployed on the project. This is
normally done by providing a table listing the amount of money budgeted for
each major work package. The manner in which this section is completed
depends upon the contractual relationship.

5.6.5.5 SPMP/5.5 Schedule

This section should define when each work package starts and
ends. This is normally done by drawing a Gantt chart (see Section 3.6).

This section should describe the milestones in the project, providing
for each milestone:
• an identifier;
• a description (e.g. a list of deliverables);
• the planned date of achievement;
• the actual date of achievement (for plan updates).

Milestones should be marked on or alongside the Gantt chart.

64 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
THE SOFTWARE PROJECT MANAGEMENT PLAN

5.7 EVOLUTION

Project planning is a continuous process. Project managers should
review their plan when:
• making progress reports;
• new risks are identified;
• problems occur.

It is good practice to draft sections of the plan as soon as the
necessary information is available, and not wait to begin planning until just
before the start of the phase that the SPMP section applies to. Some parts
of the SPMP/DD need to be drafted at the start of the project to arrive at a
total cost estimate, for example.

The evolution of the plan is closely connected with progress
reporting (see Chapter 6). Reports are produced and reviewed. Reports may
propose changes to the plan. Alternatively, changes to the plan may be
defined during the progress meeting.

5.7.1 UR phase

By the end of the UR review, the SR phase section of the SPMP
must be produced (SPMP/SR) (SPM02). The SPMP/SR describes, in detail,
the project activities to be carried out in the SR phase.

As part of its introduction, the SPMP/SR must outline a plan for the
whole project (SPM03), and provide a rough estimate of the total cost. The
project manager will need to draft the work breakdown, schedule and
budget section of the SPMP/AD, SPMP/DD and SPMP/TR at the start of the
project to provide the overview and estimate the total cost of the project.

A precise estimate of the effort involved in the SR phase must be
included in the SPMP/SR (SPM04). Specific factors affecting estimates for
the work required in the SR phase are the:
• number of user requirements;
• level of user requirements;
• stability of user requirements;
• level of definition of external interfaces;
• quality of the URD.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 65
THE SOFTWARE PROJECT MANAGEMENT PLAN

An estimate based simply on the number of user requirements
might be very misleading - a large number of detailed low-level user
requirements might be more useful, and save more time in the SR phase,
than a few high-level user requirements. A poor quality URD with few
requirements might imply that a lot of requirements analysis is required in
the SR phase.

5.7.2 SR phase

During the SR phase, the AD phase section of the SPMP must be
produced (SPMP/AD) (SPM05). The SPMP/AD describes, in detail, the
project activities to be carried out in the AD phase.

As part of its introduction, the SPMP/AD must include an outline
plan for the rest of the project, and provide an estimate of the total cost of
the whole project accurate to at least 30% (SPM06). The project manager
will need to draft the work breakdown, schedule and budget section of the
SPMP/DD and SPMP/TR at the end of the SR phase to provide the overview
and estimate the total cost of the project.

A precise estimate of the effort involved in the AD phase must be
included in the SPMP/AD (SPM07). Specific factors that affect estimates for
the work required in the AD phase are the:
• number of software requirements;
• level of detail of software requirements;
• stability of software requirements;
• level of definition of external interfaces;
• quality of the SRD.

If an evolutionary development life cycle approach is to be used,
then this should be stated in the SPMP/AD.

5.7.3 AD phase

During the AD phase, the DD phase section of the SPMP must be
produced (SPMP/DD) (SPM08). The SPMP/DD describes, in detail, the
project activities to be carried out in the DD phase.

An estimate of the total project cost must be included in the
SPMP/DD (SPM09). An accuracy of 10% should be aimed at.

66 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
THE SOFTWARE PROJECT MANAGEMENT PLAN

The SPMP/DD must contain a WBS that is directly related to the
decomposition of the software into components (SPM10).

The SPMP/DD must contain a planning network (i.e. activity
network) showing the relationships between the coding, integration and
testing activities (SPM11).

5.7.4 DD phase

As the detailed design work proceeds to lower levels, the WBS and
job schedule need to be refined to reflect this. To achieve the necessary
level of visibility, software production work packages in the SPMP/DD must
not last longer than one man-month (SPM12).

During the DD phase, the TR phase section of the SPMP must be
produced (SPMP/TR) (SPM13). The SPMP/TR describes, in detail, project
activities until final acceptance, in the OM phase.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 67
THE SOFTWARE PROJECT PROGRESS REPORT

CHAPTER 6
THE SOFTWARE PROJECT PROGRESS REPORT

6.1 INTRODUCTION

Accurate and timely reporting is essential for the control of a project.
Software project managers should produce progress reports at regular
intervals or when events occur that meet agreed criteria. The progress report
is an essential tool for controlling a project because:
• preparing the progress report forces re-evaluation of the resources

required to complete the project;
• the progress report provides initiators and senior management with

visibility of the status of the project.

Progress reports describe the project status in relation to the
applicable Software Project Management Plan. They should cover technical
status, resource status, schedule status, problems and financial status
(which may be provided separately).

Progress reports should be distributed to senior management and
the initiator. The progress report sent to senior management should contain
the information described in Section 6.6. Although the progress report sent
to the initiator should have the same structure, the level of detail provided
may not be the same because of the contractual situation. For example in a
fixed price contract, it is acceptable to omit detailed information about
resource status and financial status.

6.2 STYLE

The progress report should be plain, concise, clear, complete and
consistent. Brevity, honesty and relevance are the watchwords of the good
progress report.

6.3 RESPONSIBILITY

The software project manager is normally responsible for the
production of the progress report.

68 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
THE SOFTWARE PROJECT PROGRESS REPORT

6.4 MEDIUM

It is usually assumed that the progress report is a paper document.
There is no reason why it should not be distributed electronically to people
with the necessary equipment.

6.5 SERVICE INFORMATION

Progress reports should contain the following service information:

 a - Abstract
 b - Table of Contents

6.6 CONTENTS

The following table of contents is recommended for the progress
report:

1 Introduction
1.1 Purpose
1.2 Summary
1.3 References
1.4 Definitions and acronyms

2 Technical status
2.1 Work package technical status
2.2 Configuration status
2.3 Forecast for next reporting period

3 Resource status
3.1 Staff utilisation
3.2 Work package resource status
3.3 Resource summary

4 Schedule status
4.1 Milestone trends
4.2 Schedule summary

5 Problems

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 69
THE SOFTWARE PROJECT PROGRESS REPORT

6 Financial status report
6.1 Costs for the reporting period
6.2 Cost to completion
6.3 Limit of liability
6.4 Payments

6.6.1 Progress Report/1 Introduction

6.6.1.1 Progress Report/1.1 Purpose

This section should describe the purpose of the report. This section
should include:
• the name of the project;
• a reference to the applicable SPMP;
• a reference to the applicable contract (if any);
• a statement of the reporting period.

6.6.1.2 Progress Report/1.2 Summary

This section should summarise the main activities and
achievements during the reporting period.

Any change in the total cost to completion should be stated in this
section. Changes to work package resource estimates should be
summarised.

6.6.1.3 Progress Report/1.3 References

This section should list any documents referenced in the report or
applicable to it (e.g. this guide, the SPMP etc).

6.6.1.4 Progress Report/1.4 Definitions and acronyms

This section should list any special terms, acronyms or
abbreviations used in the report and explain their meaning.

70 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
THE SOFTWARE PROJECT PROGRESS REPORT

6.6.2 Progress Report/2 Technical status

6.6.2.1 Progress Report/2.1 Work package technical status

This section should list the work packages completed during the
reporting period. There should be some indication of whether each work
package was completed successfully or not.

This section should list the work packages continued or started
during the reporting period. The outstanding tasks for each work package
should be identified.

6.6.2.2 Progress Report/2.2 Configuration status

This section should summarise the changes to the configuration
status in the reporting period, e.g:
• RID statistics;
• issues and revisions of documents;
• SCR, SPR and SMR statistics;
• releases of software.

6.6.2.3 Progress Report/2.3 Forecast for next reporting period

This section should forecast what technical progress is expected on
each work package in the next reporting period.

Any events that are expected to take place in the reporting period
should be described (e.g. milestones, deliveries).

6.6.3 Progress Report/3 Resource status

6.6.3.1 Progress Report/3.1 Staff utilisation

This section should comprise:
• a table of hours booked by each member of the team;
• the hours staff have booked for a number of past reporting periods (e.g.

from the beginning of the current phase, or beginning of the year, or
beginning of the project, as appropriate);

• a forecast for the man-hours staff will book for future reporting periods
(e.g. up to the end of the current phase, or the end of the project, or
other milestone).

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) 71
THE SOFTWARE PROJECT PROGRESS REPORT

6.6.3.2 Progress Report/3.2 Work package resource status

This section should contain a work package progress table (see
Section 3.7.1) summarising for each work package:
• previous estimate of the effort required for completion;
• effort expended in this period;
• cumulative effort expenditure up to the end of the reporting period;
• estimate of remaining effort required for completion.

6.6.3.3 Progress Report/3.3 Resource status summary

This section should present the aggregated effort expenditure for
the reporting period for:
• the project;
• subsystems (for medium and large-size projects).

6.6.4 Progress Report/4 Schedule status

6.6.4.1 Progress Report/4.1 Milestone trend charts

This section should provide an updated milestone trend chart (see
Section 3.4.2) for all the milestones described in the SPMP section to which
this progress report applies. All changes to milestone dates made in this
reporting period should be explained and justified.

6.6.4.2 Progress Report/4.2 Schedule summary

This section should provide an updated bar chart (i.e. Gantt chart)
marked to show work packages completed and milestones achieved.
Progress on partially completed work packages may also be shown.

6.6.5 Progress Report/5 Problems

This section should identify any problems which are affecting or
could affect progress. These may include technical problems with the
software under development, environmental problems (e.g. computers,
communications, and accommodation) and resource problems (e.g.
staffing problems). This list is not exhaustive.

72 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
THE SOFTWARE PROJECT PROGRESS REPORT

6.6.6 Progress Report/6 Financial status report

The Financial Status Report (sometimes called the Cost Report)
provides the total amounts, in currency units, to be billed during the
reporting period. The Financial Status Report may be provided separately.

6.6.6.1 Progress Report/6.1 Costs for the reporting period

This section should provide a table listing the hours worked, rates
and costs (hours worked multiplied by rate) for each team member. Total
labour costs should be stated.

For ESA contracts, labour costs may have to be calculated in base
rates and price variation rates, determined by applying a contractually
specified price-variation formula to the base rate.

Non-labour costs should be listed and a total stated.

6.6.6.2 Progress Report/6.2 Cost to completion

This section should state the accumulated cost so far and the
planned cost to completion of the project and project phase.

A progress chart plotting the cost to completion values reported
since the start of the project or project phase may be provided (see Section
3.4.1).

6.6.6.3 Progress Report/6.3 Limit of liability

This section states:
• the Limit Of Liability (LOL);
• how much has been spent;
• how much there is to go.

6.6.6.4 Progress Report/6.4 Payments

This section should state what payments are due for the reporting
period (e.g. contractual stage payments on achievement of a given
milestone).

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) A-1
GLOSSARY

APPENDIX A
GLOSSARY

Terms used in this document are consistent with ESA PSS-05-0 [Ref
1] and ANSI/IEEE Std 610.12-1990 [Ref 2].

A.1 LIST OF ACRONYMS

AD Architectural Design
AD/R Architectural Design Review
ADD Architectural Design Document
AMI Application of Metrics in Industry
ANSI American National Standards Institute
AT Acceptance Test
BSSC Board for Software Standardisation and Control
CASE Computer Aided Software Engineering
COCOMO Constructive Cost Model
DCR Document Change Record
DD Detailed Design and production
DD/R Detailed Design and production Review
DDD Detailed Design and production Document
ESA European Space Agency
FPA Function Point Analysis
ICD Interface Control Document
IEEE Institute of Electrical and Electronics Engineers
IT Integration Test
LOL Limit Of Liability
PERT Program Evaluation and Review Technique
PSS Procedures, Specifications and Standards
QA Quality Assurance
RID Review Item Discrepancy
SCMP Software Configuration Management Plan
SCR Software Change Request
SMR Software Modification Report
SPR Software Problem Report
SR Software Requirements
SR/R Software Requirements Review
SRD Software Requirements Document
ST System Test
SUT Software Under Test
SVV Software Verification and Validation

A-2 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
GLOSSARY

SVVP Software Verification and Validation Plan
UR User Requirements
UR/R User Requirements Review
URD User Requirements Document
UT Unit Test

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) B-1
REFERENCES

 APPENDIX B
REFERENCES

1. ESA Software Engineering Standards, ESA PSS-05-0 Issue 2, February
1991.

2. IEEE Standard Glossary of Software Engineering Terminology, ANSI/IEEE
Std 610.12-1990.

3. IEEE Standard for Software Project Management Plans, ANSI/IEEE Std
1058.1-1987.

4. Managing the Software Process, Watts S. Humphrey, SEI Series in Software
Engineering, Addison-Wesley, August 1990.

5. Reference Model for Frameworks of Software Engineering Environments,
European Computer Manufacturer's Association, TR/55, 1991.

6. Evolution of the ESA Software Engineering Standards, J.Fairclough and
C.Mazza, in Proceedings of the IEEE Fourth Software Engineering Standards
Application Workshop, 1991.

7. Software Process Themes and Issues, M. Dowson, in Proceedings of 2nd
International Conference on the Software Process, IEEE Computer Society
Press, 1993.

8. Tool Support for Software Process Definition and Enactment, C. Fernström,
Proceedings of the ESA/ESTEC workshop on European Space Software
Development Environment, ESA, 1992.

9. Software Engineering Economics, B.Boehm, Prentice-Hall, 1981

10. The Mythical Man-Month, F. Brooks, Addison-Wesley, 1975

11. Software Function, source lines of code and development effort prediction -
a software science validation, A. Albrecht and J. Gaffney Jr, IEEE
Transactions on Software Engineering, SE-9, (6), 1983.

12. SOCRAT, Software Cost Resources Assessment Tool, ESA Study Contract
Report, J.Fairclough, R. Blake, I. Alexander, 1992.

13. Function Point Analysis: Difficulties and Improvements, IEEE Transactions
on Software Engineering, Vol 14, 1, 1988.

B-2 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
REFERENCES

14. Managing Computer Projects, R. Gibson, Prentice-Hall, 1992.

15. Software Sizing and Estimating, C.R. Symons, Wiley, 1991.

16. Project Control Requirements and Procedures for Medium-Size Projects,
ESA PSS-38, Issue 1, December 1977.

17. The Nature of Managerial Work, H. Mintzberg, Prentice-Hall, 1980.

18. Applications of Metrics in Industry Handbook, a quantitative approach to
software management, Centre for Systems and Software Engineering, South
Bank University, London, 1992.

19. Guide to the Software Engineering Standards, ESA PSS-05-01, Issue 1,
October 1991.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) C-1
MANDATORY PRACTICES

APPENDIX C
MANDATORY PRACTICES

This appendix is repeated from ESA PSS-05-0, appendix D.8.

SPM01 All software project management activities shall be documented in the
Software Project Management Plan (SPMP).

SPM02 By the end of the UR review, the SR phase section of the SPMP shall be
produced (SPMP/SR).

SPM03 The SPMP/SR shall outline a plan for the whole project.

SPM04 A precise estimate of the effort involved in the SR phase shall be included in
the SPMP/SR.

SPM05 During the SR phase, the AD phase section of the SPMP shall be produced
(SPMP/AD).

SPM06 An estimate of the total project cost shall be included in the SPMP/AD.

SPM07 A precise estimate of the effort involved in the AD phase shall be included in
the SPMP/AD.

SPM08 During the AD phase, the DD phase section of the SPMP shall be produced
(SPMP/DD).

SPM09 An estimate of the total project cost shall be included in the SPMP/DD.

SPM10 The SPMP/DD shall contain a WBS that is directly related to the
decomposition of the software into components.

SPM11 The SPMP/DD shall contain a planning network showing relationships of
coding, integration and testing activities.

SPM12 No software production work packages in the SPMP/DD shall last longer
than 1 man-month.

SPM13 During the DD phase, the TR phase section of the SPMP shall be produced
(SPMP/TR).

C-2 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
MANDATORY PRACTICES

This page is intentionally left blank.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) D-1
PROJECT MANAGEMENT FORMS

APPENDIX D
PROJECT MANAGEMENT FORMS

D-2 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
PROJECT MANAGEMENT FORMS

D.1 WORK PACKAGE DESCRIPTION

PROJECT: PHASE: W.P. REF:

W.P. TITLE:

CONTRACTOR: SHEET 1 OF 1

MAJOR CONSTITUENT:

START EVENT: PLANNED DATE: ISSUE REF:

END EVENT: PLANNED DATE: ISSUE DATE:

W.P. MANAGER

Inputs

Activities

Outputs

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) D-3
PROJECT MANAGEMENT FORMS

D.2 MILESTONE TREND CHART

M1

M2

M3

M4

M5

M6

M7

Milestone

Timescale
Update

key to milestones and dates

D-4 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
PROJECT MANAGEMENT FORMS

This page is intentionally left blank.

ESA PSS-05-08 Issue 1 Revision 1 (March 1995) E-1
INDEX

APPENDIX E
INDEX

activity distribution, 40
activity network, 21
AMI, 32
ANSI/IEEE Std 1058.1-1987, 55
ANSI/IEEE Std 610.12-1990, 1
Boehm, 20, 42
Brooks' Law, 26
COCOMO, 39
commercial software, 30
contingency plans, 27
cost report, 72
cyclomatic complexity, 33
deliverables, 7, 58
Delphi method, 41
documentation effort, 42
duration, 20
dynamic models, 38
enaction, 54
estimating tool, 52
evolutionary approach, 11
external interfaces, 31
financial status report, 72
FPA, 40
Function Point Analysis, 40
growth curve, 28
heuristics, 53
human resources, 18
incremental approach, 10
informational responsibilities, 4
integration complexity, 33
Interface Control Documents, 31
leadership, 22
limit of liability, 72
location of staff, 27
management control loop, 3
management responsibility, 4
management structure, 59
Mark Two Function Point Analysis, 40
maturity, 25
methods, 29
metric, 33
metric data analysis, 34
metric data collection, 34
milestone trend charts, 48
Mintzberg, 4
non-labour costs, 20
organigram, 19

organigrams, 58
PERT, 43
Petri Nets, 37
phase per cent method, 41
planning network, 66
process improvement, 25
process model, 8, 58
process modelling method, 37
process modelling tool, 52
process support tool, 54
progress charts, 47
progress reports, 35
progress tables, 46
project development effort, 33
project development time, 33
project interfaces, 5
project organisation, 58
project planning, 6
project planning tool, 51
quality system, 13
reliability, 33
resource smoothing, 22
risk analysis tool, 53
risk management, 23
risk table, 44
rule of seven, 5, 18
single point failure, 27
SLC03, 8
software project management, 3
software size measures, 53
SPM01, 55, 57
SPM02, 64
SPM03, 64
SPM04, 55, 64
SPM05, 65
SPM06, 55, 65
SPM07, 55, 65
SPM08, 65
SPM09, 55, 65
SPM10, 55, 66
SPM11, 55, 66
SPM12, 66
SPM13, 66
SPMP, 7
staff, 24
staffing profile, 28
standard interfaces, 31

E-2 ESA PSS-05-08 Issue 1 Revision 1 (March 1995)
INDEX

structured analysis, 52
team leader, 23
technical management, 23
technical novelty, 29
terms of reference, 4
timesheets, 35
tools, 29
unity of command principle, 18
user requirements, 30
waterfall approach, 9
WBS, 14
Work Breakdown Structure, 14
work package completion reports, 35
work package definition, 14

