ESA PSS-05-10 Issue 1 Revision 1
March 1995

Guide to
software
verification
and
validation

Prepared by:

ESA Board for Software
Standardisation and Control
(BSSC)

Approved by:
The Inspector General, ESA

european space agency / agence spatiale européenne
8-10, rue Mario-Nikis, 75738 PARIS CEDEX, France

i ESA PSS-05-10 Issue 1 Revision 1 (March 1995)

DOCUMENT STATUS SHEET

DOCUMENT STATUS SHEET

DOCUMENT STATUS SHEET

1. DOCUMENT TITLE: ESA PSS-05-10 Guide to Software Verification and Validation

2. ISSUE 3. REVISION | 4. DATE

5. REASON FOR CHANGE

1 0 1994

1 1 1995

First issue

Minor updates for publication

Issue 1 Revision 1 approved, May 1995
Board for Software Standardisation and Control
M. Jones and U. Mortensen, co-chairmen

Issue 1 approved by:
The Inspector General, ESA

Published by ESA Publications Division,
ESTEC, Noordwijk, The Netherlands.
Printed in the Netherlands.

ESA Price code: E2

ISSN 0379-4059

Copyright © 1994 by European Space Agency

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
TABLE OF CONTENTS
TABLE OF CONTENTS
CHAPTER 1 INTRODUCTIONcuttiiiiiiiiiiiiiiiiiiiieeseeeeeesessssesssssssssssssesssessesssseseeeeeees
1.1 PURPOSE ...ttt ettt b ettt e b et san e b e enne e
1.2 OVERVIEW ...ttt sttt ettt be et sin e b snne e
1.3 IEEE STANDARDS USED FOR THIS GUIDE.........cccooiiiiiiiieiieeee e
CHAPTER 2 SOFTWARE VERIFICATION AND VALIDATION.......cccvviviiiiiiiinienee
2.1 INTRODUCTION.....ttiitieititatie ettt ettt ettt et st e beesnneesaneenbee e
2.2 PRINCIPLES OF SOFTWARE VERIFICATION AND VALIDATIONcccocevvienieenne.
2.3 REVIEWS ...ttt b ettt et
2.3.1 TECNNICAI FEVIEWS.......eiiiieiieeiee sttt
2.3. 1.1 ODJECHIVES ...ttt ettt nbeesae e
2.3.1.2 OrganiSatiONeeiueeiieeieeeriie ettt sb et
2.3 L3 INPUL .
2.3. 1.4 ACHVITIES ...ttt ettt nbeesne e
2.3.1.4. 1 Preparationcccueeueeiiienieesiee ettt 10
2.3.1.4.2 REVIEW MEELINGeiiutieiieieiie sttt 11
2.3.1.5 OULPUL ...t 12
2.3.2 WalKINrOUGNS ..o 12
2.3.2.1 ODJECHIVES ..ottt 13
2.3.2.2 OrganiSatiONccoeeiueeiiieiie ettt 13
2.3 2.3 INPUL ... 14
2.3.2.4 ACHVITIES ...ttt 14
2.3.2.4. 1 Preparationcccueiueeiiieniieniee sttt 14
2.3.2.4.2 REVIEW MEELINGeiivieiiieiie ettt 14
2.3.2.5 OULPUL ...ttt 15
2.3.3 AUIES et 15
2.3.3.1 ODJECHIVES ...ttt 16
2.3.3.2 OrganiSatiONcciueiiuieiiieiie ettt 16
2.3.3.3 INPUL ..o 16
2.3.3.4 ACHVITIES ...ttt 17
2.3.3.5 OULPUL ...t 17
2A TRACING ..ttt et b et sb et e sar e beeanre e 18
2.5 FORMAL PROOF......coiiiiiieiit ettt anne e 19
2.8 TESTING ...ttt ettt b et sin e nbeeanbe e 19
2.6. 1 UNIEEESTS ..ottt ettt et e e sbn e e nnne e 22
2.6.1.1 UNIt teSt Planningcccooeeiiiiiieiieiie e 22
2.6.1.2 UNIEtEST AESIGN ..eeiiiiiiieiiieieie et 23
2.6.1.2.1 White-boX UNITTESESccuviiiiiiiieiiiieiie e 25
2.6.1.2.2 Black-boxX Unit teStS.........ooviiiiiiiiieiie e 26

2.6.0.2.3 Pl OIMMANCE LSS vt eeeeee et e te e e e ee e e e e e e e e e e eeeeeerenaaens 28

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)

TABLE OF CONTENTS

2.6.1.3 Unit test case definition..........cccvvieieiiiiniiieree e 28
2.6.1.4 Unit test procedure definition..........ccocveeiieiiienie e 28
2.6.1.5 UNit teSt rePOtINGcoiveeiiieiiiieitie st 29
2.6.2 INTEGratioN TESTSeiiiiiiiieiiieee ettt eae e 29
2.6.2.1 Integration test Planningcccoeeiiiiiie i 29
2.6.2.2 Integration teSt deSIgNcooviiiieiiierie e 30
2.6.2.2.1 White-box integration teStS..........ccoevriieiiiiiie e 31
2.6.2.2.2 Black-box integration testS..........cccceiiiiiiiiiii e 32
2.6.2.2.3 PerformancCe tESIS.......coouiiiiiiiieiie e 32
2.6.2.3 Integration test case definition...........cccoovviieniiiie e 32
2.6.2.4 Integration test procedure definition...........cccoveeiirviienie e 32
2.6.2.5 Integration teSt rePOItINGcoieeriieiiieie e 33
2.6.3 SYSLEIM TESES ...oiiiiiiiiiii ettt 33
2.6.3.1 System test PIanNiNg........cccoceeiiriieiie e 33
2.6.3.2 SYStEM St AESIGN ...oiviiiiiieiii et 33
2.6.3.2.1 FUNCHION TESTS....coiiiiiieiiii ettt 34
2.6.3.2.2 PerformancCe tESIS.......coouiiiiiiiieiieesiee e 34
2.6.3.2.3 INterfaCe TESIS....cciuiiiiie e 35
2.6.3.2.4 OPerations tESIS.....cccueeiiiiiieiiieiie e 35
2.6.3.2.5 RESOUICE tESES ...ooiiiiieiiiieiieee et 36
2.6.3.2.6 SECUIMTY TESES .. .eiitiiiiie ittt 36
2.6.3.2.7 POrtability tESTS.......oviieiiieiie e 37
2.6.3.2.8 Reliability teSTS.......ccivieieieiie et 37
2.6.3.2.9 Maintainability tESESccceriiiiiiieiie e 37
2.6.3.2.10 Safety tESTS......iiiiiiiieiieesiie et s 38
2.6.3.2.11 MisCellan@ous tESESccviiiiriiiiiie e 38
2.6.3.2.12 ReQreSSION TESESviviiiiiiieiiie et 38
2.6.3.2.13 SHrESS ESIS. ... uiii ittt s 39
2.6.3.3 System test case definitionccovveiiieiiienie e 39
2.6.3.4 System test procedure definitionc.cceveerieiiie e 39
2.6.3.5 SyStem teSt rePOrtiNgc.cevvieiieiiieiie et 40
2.6.4 ACCEPIANCE TESIS ...iiiiiii it 40
2.6.4.1 Acceptance test Planningcccooeeriiiiieiiienie e 40
2.6.4.2 AcCeptance teSt deSIGNccuiiiiiiiieiie e 40
2.6.4.2.1 Capability tESIS.......coiiiiiieiieee e 41
2.6.4.2.2 CONSHrAINT TESTSooiiieiiieiie et 41
2.6.4.3 Acceptance test case SPecCifiCation............cccevveriiriiieenie i 41
2.6.4.4 Acceptance test procedure specification...........cccccoevveviieeiiinesinenns 42

2.6.4.5 Acceptance test rePOrtiNg........cccovvueereieiieiiienie e 42

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)

TABLE OF CONTENTS
CHAPTER 3 SOFTWARE VERIFICATION AND VALIDATION METHODS.......... 43
3.1 INTRODUCTIONcttetie ettt ettt b ettt san e nbeesnnee 43
3.2 SOFTWARE INSPECTIONS ...ttt 43
3.2.1 OBJECHIVES ...ttt ettt 44
3.2.2 OFQANISALIONeoiiiiiieiiie ettt ettt s eesbn e beennne e 44
2.3 INPUL e 45
32,4 ACTIVITIES ...ttt b ettt ettt b e bbb 45
3.2.4. 1 OVEIVIEW ...ttt ettt ettt ne e 46
3.2.4.2 PreParaliOoncc.eeiueiiueeiiiesiie ettt ettt 46
3.2.4.3 REVIEW MEETING ...oovviitieiiiieiiie ettt 47
3.2 4.4 REBWOTK ...ttt 48
3.2.4.5 FOIOW-UD .ot 48
8 o3 @ 111 01 | ST UP PP 48
3.3 FORMAL METHODS ...ttt 48
3.4 PROGRAM VERIFICATION TECHNIQUES.........ccoiiiieiieiie e 49
3.5 CLEANROOM METHODuiiiiiiiiieiit ettt 49
3.6 STRUCTURED TESTINGuttiitiiiiieiiteitie sttt 50
3.6. 1 TESTADIILY ... 50
3.6.2 BranCh teSHINGeoiiiiiiieiei e 54
3.6.3 Baseling MEthOd.........couiiiiiiii e 54
3.7 STRUCTURED INTEGRATION TESTINGooiiiiiiiiiiiieiie et 55
.7 L TESTADIILY .. 56
3.7.2 CoNtrol floOW tESTINGccvieiiiiiie e 60
3.7.3 Design integration testing method..............ccccooiiiiiiiiien e 60
CHAPTER 4 SOFTWARE VERIFICATION AND VALIDATION TOOLS............... 63
4.1 INTRODUCTIONttt ettt nneas 63
4.2 TOOLS FOR REVIEWINGottt 63
4.2.1 General adminiStrative t00IS..........coiiiiiieiieeiie e 63
4.2.2 SEALIC ANAIYSEIS. ... eiiiiieiiie ettt 64
4.2.3 Configuration management t00ISccoouvriiiiiieriiiiee e 65
4.2.4 Reverse engineering toO0IScoiuiiiiriiieiie e 65
4.3 TOOLS FOR TRACING.......ctiiieiiieiie ettt 65
4.4 TOOLS FOR FORMAL PROOFciiiiiiiieiieiiee et 67
4.5 TOOLS FOR TESTING ..ottt 67
4.5.1 SEALIC ANAIYSEIS.iiiiiiiiiieiie ettt 69
4.5.2 TESt CASE QENEIALOIS.....cciutiieiieieiiiee ettt ettt et e b e e 70
4.5.3 TESENAIMESSESviiiiiiiiiie ettt sae e 70
4.5.4 DEDUGUETS ... 72
4.5.5 COVErage @NalYSEIS.....ccuiiiuiiiiieiiiiaiie ittt sttt nne e 72
4.5.6 Performance @nalySEerS.........coouiiiiiiiieiiieiie et 73
4.5.7 COMPATALOLS.....ceiiiiiieiiiieiiee ettt e st e et e e s e e s ne e e e 73

4.5.8 Test management tOO0ISoceeiiiiiiieiiieie e 74

vi ESA PSS-05-10 Issue 1 Revision 1 (March 1995)

TABLE OF CONTENTS

CHAPTER 5 THE SOFTWARE VERIFICATION AND VALIDATION PLAN 75
5.1 INTRODUCTIONcttiitieitie sttt ettt sttt sttt snneenbeeannee 75
5.2 STYLE ittt are e 77
5.3 RESPONSIBILITY ..ttt ettt ettt ettt anne e 77
5.4 MEDIUM ..ottt ettt ettt sbe et sae e nbe e 77
5.5 SERVICE INFORMATION ...ttt sttt sttt 78
5.6 CONTENT OF SVVP/SR, SVVP/AD & SVVP/DD SECTIONS.......cccccovvivieniienienns 78
5.7 CONTENT OF SVVP/UT, SVVP/IT, SVVP/ST & SVVP/AT SECTIONS.................. 82
5.8 EVOLUTION ...ttt sttt nb e nbeeannee 92
5.8 LUR PRASE ...ttt 92
5.8.2 SR PNASE.....eii it 92
5.8.3 AD PNESE .. .ot 93
5.8.4 DD PRESEciiiiiiiiiiiie et 93
APPENDIX A GLOSSARY ... A-1
APPENDIX B REFERENCES.........coooiii B-1
APPENDIX C MANDATORY PRACTICES ... C-1

APPENDIX D INDEX ... ettt e e e e ennns D-1

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
PREFACE

PREFACE

Vii

This document is one of a series of guides to software engineering produced by

the Board for Software Standardisation and Control (BSSC), of the European Space
Agency. The guides contain advisory material for software developers conforming to
ESA's Software Engineering Standards, ESA PSS-05-0. They have been compiled from
discussions with software engineers, research of the software engineering literature,
and experience gained from the application of the Software Engineering Standards in

projects.

Levels one and two of the document tree at the time of writing are shown in

Figure 1. This guide, identified by the shaded box, provides guidance about

implementing the mandatory requirements for software verification and validation

described in the top level document ESA PSS-05-0.

ESA
Software
Engineering
Standards
PSS-05-0
Guide to the
Software Engineering
Standards
PSS-05-01
Guide to the Guide to
User Requirements Software Project
Definition Phase Management
PSS-05-02 UR Guide PSS-05-08 SPM Guide
PSS-05-03 SR Guide | | PSS-05-09 SCM Guide
PSS-05-04 AD Guide ‘ ‘ PSS-05-10 SVV Guide
PSS-05-05 DD Guide | [PSS-05-11 SQA Guide

PSS-05-06 TR Guide |
PSS-05-07 OM Guide |

Figure 1: ESA PSS-05-0 document tree

Level 1

Level 2

The Guide to the Software Engineering Standards, ESA PSS-05-01, contains
further information about the document tree. The interested reader should consult this

guide for current information about the ESA PSS-05-0 standards and guides.

The following past and present BSSC members have contributed to the
production of this guide: Carlo Mazza (chairman), Gianfranco Alvisi, Michael Jones,

Bryan Melton, Daniel de Pablo and Adriaan Scheffer.

viii ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
PREFACE

The BSSC wishes to thank Jon Fairclough for his assistance in the development
of the Standards and Guides, and to all those software engineers in ESA and Industry
who have made contributions.

Requests for clarifications, change proposals or any other comment concerning
this guide should be addressed to:

BSSC/ESOC Secretariat BSSC/ESTEC Secretariat
Attention of Mr C Mazza Attention of Mr B Melton
ESOC ESTEC

Robert Bosch Strasse 5 Postbus 299

D-64293 Darmstadt NL-2200 AG Noordwijk

Germany The Netherlands

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 1
INTRODUCTION

11

1.2

CHAPTER 1
INTRODUCTION

PURPOSE

ESA PSS-05-0 describes the software engineering standards to be
applied for all deliverable software implemented for the European Space
Agency (ESA), either in-house or by industry [Ref 1].

ESA PSS-05-0 requires that software be verified during every phase
of its development life cycle and validated when it is transferred. These
activities are called 'Software Verification and Validation' (SVV). Each project
must define its Software Verification and Validation activities in a Software
Verification and Validation Plan (SVVP).

This guide defines and explains what software verification and
validation is, provides guidelines on how to do it, and defines in detail what a
Software Verification and Validation Plan should contain.

This guide should be read by everyone concerned with developing
software, such as software project managers, software engineers and
software quality assurance staff. Sections on acceptance testing and formal
reviews should be of interest to users.

OVERVIEW

Chapter 2 contains a general discussion of the principles of
software verification and validation, expanding upon the ideas in ESA PSS-
05-0. Chapter 3 discusses methods for software verification and validation
that can be used to supplement the basic methods described in Chapter 2.
Chapter 4 discusses tools for software verification and validation. Chapter 5
describes how to write the SVVP.

All the mandatory practices in ESA PSS-05-0 concerning software
verification and validation are repeated in this document. The identifier of the
practice is added in parentheses to mark a repetition. This document
contains no new mandatory practices.

1.3

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
INTRODUCTION

IEEE STANDARDS USED FOR THIS GUIDE

Six standards of the Institute of Electrical and Electronics Engineers
(IEEE) have been used to ensure that this guide complies as far as possible
with internationally accepted standards for verification and validation
terminology and documentation. The IEEE standards are listed in Table 1.3
below.

Reference Title

610.12-1990 | Standard Glossary of Software Engineering Terminology

829-1983 Standard for Software Test Documentation

1008-1987 Standard for Software Unit Testing

1012-1986 Standard for Software Verification and Validation Plans

1028-1988 Standard for Software Reviews and Audits

Table 1.3: IEEE Standards used for this guide.

IEEE Standard 829-1983 was used to define the table of contents
for the SVVP sections that document the unit, integration, system and
acceptance testing activities (i.e. SVVP/UT, SVVP/IT, SVVP/ST, SVVP/AT).

IEEE Standard 1008-1987 provides a detailed specification of the
unit testing process. Readers who require further information on the unit
testing should consult this standard.

IEEE Standard 1012-1986 was used to define the table of contents
for the SVVP sections that document the non-testing verification and
validation activities (i.e. SVVP/SR, SVVP/AD, SVVP/DD).

IEEE Standard 1028-1988 was used to define the technical review,
walkthrough, inspection and audit processes.

Because of the need to integrate the requirements of six standards
into a single approach to software verification and validation, users of this
guide should not claim complete compliance with any one of the IEEE
standards.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 3
SOFTWARE VERIFICATION AND VALIDATION

CHAPTER 2
SOFTWARE VERIFICATION AND VALIDATION

2.1 INTRODUCTION

Software verification and validation activities check the software
against its specifications. Every project must verify and validate the software
it produces. This is done by:

checking that each software item meets specified requirements;

checking each software item before it is used as an input to another
activity;

ensuring that checks on each software item are done, as far as
possible, by someone other than the author;

ensuring that the amount of verification and validation effort is adequate
to show each software item is suitable for operational use.

Project management is responsible for organising software
verification and validation activities, the definition of software verification and
validation roles (e.g. review team leaders), and the allocation of staff to
those roles.

Whatever the size of project, software verification and validation
greatly affects software quality. People are not infallible, and software that
has not been verified has little chance of working. Typically, 20 to 50 errors
per 1000 lines of code are found during development, and 1.5 to 4 per 1000
lines of code remain even after system testing [Ref 20]. Each of these errors
could lead to an operational failure or non-compliance with a requirement.
The objective of software verification and validation is to reduce software
errors to an acceptable level. The effort needed can range from 30% to 90%
of the total project resources, depending upon the criticality and complexity
of the software [Ref 12].

This chapter summarises the principles of software verification and
validation described in ESA PSS-05-0 and then discusses the application of
these principles first to documents and then to code.

4 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

2.2 PRINCIPLES OF SOFTWARE VERIFICATION AND VALIDATION

Verification can mean the:

act of reviewing, inspecting, testing, checking, auditing, or otherwise
establishing and documenting whether items, processes, services or
documents conform to specified requirements [Ref.5];

process of evaluating a system or component to determine whether the
products of a given development phase satisfy the conditions imposed
at the start of the phase [Ref. 6]

formal proof of program correctness [Ref.6].

The first definition of verification in the list above is the most general
and includes the other two. In ESA PSS-05-0, the first definition applies.

Validation is, according to its ANSI/IEEE definition, 'the process of
evaluating a system or component during or at the end of the development
process to determine whether it satisfies specified requirements'. Validation
is, therefore, 'end-to-end' verification.

Verification activities include:

technical reviews, walkthroughs and software inspections;
checking that software requirements are traceable to user requirements;

checking that design components are traceable to software
requirements;

unit testing;
integration testing;
system testing;
acceptance testing;
audit.

Verification activities may include carrying out formal proofs.

The activities to be conducted in a project are described in the
Software Verification and Validation Plan (SVVP).

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

W

roject
equest

1

USER

REQUIREMENTS =

SVVP/AT

Accepted
Software

ACCEPTANCE

DEFINITION

URD \\SVVP/SR

SOFTWARE
REQUIREMENTS
2 DEFINITION

SVVP/ST

9 TESTS

Tested
System

SRD\ \SVVP/AD

ARCHITECTURAL

SVVP/IT

8

SYSTEM
TESTS

Tested

/ Subsystems

INTEGRATION

DESIGN

3
ADD\ \SVVP/DD

7 TESTS

Tested
Units

DETAILED

Key

DESIGN

Product

SVVP/UT

UNIT
TESTS

6
Compiled
SVVP/DD
DDD\ \ / Modules

CODE

Activity

Verify

Figure 2.2: Life cycle verification approach

Figure 2.2 shows the life cycle verification approach. Software
development starts in the top left-hand corner, progresses down the left-
hand 'specification’ side to the bottom of the 'V' and then onwards up the
right-hand 'production’ side. The V-formation emphasises the need to verify
each output specification against its input specification, and the need to
verify the software at each stage of production against its corresponding
specification.

In particular the:

SRD must be verified with respect to the URD by means of the
SVVP/SR;

ADD must be verified with respect to the SRD by means of the
SVVP/AD;

DDD must be verified with respect to the ADD by means of the
SVVP/DD;

code must be verified with respect to the DDD by means of the
SVVP/DD;

unit tests verify that the software subsystems and components work
correctly in isolation, and as specified in the detailed design, by means
of the SVVP/UT,

2.3

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

integration tests verify that the major software components work
correctly with the rest of the system, and as specified in the architectural
design, by means of the SVVP/IT;

system tests verify that the software system meets the software
requirements, by means of the SVVP/ST;

acceptance tests verify that the software system meets the user
requirements, by means of the SVVP/AT.

These verification activities demonstrate compliance to
specifications. This may be done by showing that the product:

performs as specified;
contains no defects that prevent it performing as specified.

Demonstration that a product meets its specification is a
mechanical activity that is driven by the specification. This part of verification
is efficient for demonstrating conformance to functional requirements (e.g. to
validate that the system has a function it is only necessary to exercise the
function). In contrast, demonstration that a product contains no defects that
prevent it from meeting its specification requires expert knowledge of what
the system must do, and the technology the system uses. This expertise is
needed if the non-functional requirements (e.g. those for reliability) are to be
met. Skill and ingenuity are needed to show up defects.

In summary, software verification and validation should show that
the product conforms to all the requirements. Users will have more
confidence in a product that has been through a rigorous verification
programme than one subjected to minimal examination and testing before
release.

REVIEWS

A review is 'a process or meeting during which a work product, or
set of work products, is presented to project personnel, managers, users,
customers, or other interested parties for comment or approval' [Ref 6].

Reviews may be formal or informal. Formal reviews have explicit and
definite rules of procedure. Informal reviews have no predefined procedures.
Although informal reviews can be very useful for educating project members
and solving problems, this section is only concerned with reviews that have
set procedures, i.e. formal reviews.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 7
SOFTWARE VERIFICATION AND VALIDATION

2.3.1

Three kinds of formal review are normally used for software
verification:

technical review;
walkthrough;
audits.

These reviews are all ‘formal reviews' in the sense that all have
specific objectives and procedures. They seek to identify defects and
discrepancies of the software against specifications, plans and standards.

Software inspections are a more rigorous alternative to
walkthroughs, and are strongly recommended for software with stringent
reliability, security and safety requirements. Methods for software
inspections are described in Section 3.2.

The software problem reporting procedure and document change
procedure defined in Part 2, Section 3.2.3.2 of ESA PSS-05-0, and in more
detail ESA PSS-05-09 'Guide to Software Configuration Management, calls
for a formal review process for all changes to code and documentation. Any
of the first two kinds of formal review procedure can be applied for change
control. The SRB, for example, may choose to hold a technical review or
walkthrough as necessary.

Technical reviews

Technical reviews evaluate specific software elements to verify
progress against the plan. The technical review process should be used for
the UR/R, SR/R, AD/R, DD/R and any critical design reviews.

The UR/R, SR/R, AD/R and DD/R are formal reviews held at the end
of a phase to evaluate the products of the phase, and to decide whether the
next phase may be started (UR08, SR09, AD16 and DD11).

Critical design reviews are held in the DD phase to review the
detailed design of a major component to certify its readiness for
implementation (DD10).

The following sections describe the technical review process. This
process is based upon the ANSI/IEEE Std 1028-1988, 'IEEE Standard for
Software Reviews and Audits' [Ref 10], and Agency best practice.

2311

2.3.1.2

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

Objectives

The objective of a technical review is to evaluate a specific set of
review items (e.g. document, source module) and provide management with
evidence that:

they conform to specifications made in previous phases;

they have been produced according to the project standards and
procedures;

any changes have been properly implemented, and affect only those
systems identified by the change specification (described in a RID, DCR
or SCR).

Organisation

The technical review process is carried out by a review team, which

is made up of:
a leader;
a secretary;
members.

In large and/or critical projects, the review team may be split into a
review board and a technical panel. The technical panel is usually
responsible for processing RIDs and the technical assessment of review
items, producing as output a technical panel report. The review board

oversees the review procedures and then independently assesses the status
of the review items based upon the technical panel report.

The review team members should have skills to cover all aspects of
the review items. Depending upon the phase, the review team may be drawn
from:

users;

software project managers;

software engineers;

software librarians;

software quality assurance staff;

independent software verification and validation staff;
independent experts not involved in the software development.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 9
SOFTWARE VERIFICATION AND VALIDATION

Some continuity of representation should be provided to ensure
consistency.
The leader's responsibilities include:
nominating the review team;

organising the review and informing all participants of its date, place
and agenda,;

distribution of the review items to all participants before the meeting;
organising as necessary the work of the review team;
chairing the review meetings;
issuing the technical review report.
The secretary will assist the leader as necessary and will be

responsible for documenting the findings, decisions and recommendations
of the review team.

Team members examine the review items and attend review
meetings. If the review items are large, complex, or require a range of
specialist skills for effective review, the leader may share the review items
among members.

23.1.3 Input

Input to the technical review process includes as appropriate:
a review meeting agenda;
a statement of objectives;
the review items;
specifications for the review items;
plans, standards and guidelines that apply to the review items;
RID, SPR and SCR forms concerning the review items;
marked up copies of the review items;
reports of software quality assurance staff.

2.3.1.4 Activities

The technical review process consists of the following activities:
preparation;

review meeting.

10

23141

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

The review process may start when the leader considers the review
items to be stable and complete. Obvious signs of instability are the
presence of TBDs or of changes recommended at an earlier review meeting
not yet implemented.

Adequate time should be allowed for the review process. This
depends on the size of project. A typical schedule for a large project (20
man years or more) is shown in Table 2.3.1.4.

Event Time
Review items distributed R - 20 days
RIDs categorised and distributed R - 10 days
Review Meeting R

Issue of Report R + 20 days

Table 2.3.1.4: Review Schedule for a large project

Members may have to combine their review activities with other
commitments, and the review schedule should reflect this.

Preparation

The leader creates the agenda and distributes it, with the
statements of objectives, review items, specifications, plans, standards and
guidelines (as appropriate) to the review team.

Members then examine the review items. Each problem is recorded
by completing boxes one to six of the RID form. A RID should record only
one problem, or group of related problems. Members then pass their RIDs
to the secretary, who numbers each RID uniquely and forwards them to the
author for comment. Authors add their responses in box seven and then
return the RIDs to the secretary.

The leader then categorises each RID as major, minor, or editorial.
Major RIDs relate to a problem that would affect capabilities, performance,
quality, schedule and cost. Minor RIDs request clarification on specific
points and point out inconsistencies. Editorial RIDs point out defects in
format, spelling and grammar. Several hundred RIDs can be generated in a
large project review, and classification is essential if the RIDs are to be dealt

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 11
SOFTWARE VERIFICATION AND VALIDATION

2.3.1.4.2

with efficiently. Failure to categorise the RIDs can result in long meetings that
concentrate on minor problems at the expense of major ones.

Finally the secretary sorts the RIDs in order of the position of the
discrepancy in the review item. The RIDs are now ready for input to the
review meeting.

Preparation for a Software Review Board follows a similar pattern,
with RIDs being replaced by SPRs and SCRs.

Review meeting

A typical review meeting agenda consists of:
Introduction;
Presentation of the review items;
Classification of RIDs;
Review of the major RIDs;
Review of the other RIDs;

© a0k~ w NP

Conclusion.

The introduction includes agreeing the agenda, approving the report
of any previous meetings and reviewing the status of outstanding actions.

After the preliminaries, authors present an overview of the review
items. If this is not the first meeting, emphasis should be given to any
changes made since the items were last discussed.

The leader then summarises the classification of the RIDs. Members
may request that RIDs be reclassified (e.g. the severity of a RID may be
changed from minor to major). RIDs that originate during the meeting should
be held over for decision at a later meeting, to allow time for authors to
respond.

Major RIDs are then discussed, followed by the minor and editorial
RIDs. The outcome of the discussion of any defects should be noted by the
secretary in the review decision box of the RID form. This may be one of
CLOSE, UPDATE, ACTION or REJECT. The reason for each decision should
be recorded. Closure should be associated with the successful completion
of an update. The nature of an update should be agreed. Actions should be
properly formulated, the person responsible identified, and the completion
date specified. Rejection is equivalent to closing a RID with no action or
update.

12 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

The conclusions of a review meeting should be agreed during the
meeting. Typical conclusions are:

authorisation to proceed to the next phase, subject to updates and
actions being completed;

authorisation to proceed with a restricted part of the system;
a decision to perform additional work.
One or more of the above may be applicable.
If the review meeting cannot reach a consensus on RID dispositions
and conclusions, possible actions are:
recording a minority opinion in the review report;
for one or more members to find a solution outside the meeting;
referring the problem to the next level of management.
2.3.1.5 Output
The output from the review is a technical review report that should
contain the following:
abstract of the report;
a list of the members;
an identification of the review items;

tables of RIDs, SPRs and SCRs organised according to category, with
dispositions marked;

a list of actions, with persons responsible identified and expected dates
for completion defined;

conclusions.

This output can take the form of the minutes of the meeting, or be a
self-standing report. If there are several meetings, the collections of minutes
can form the report, or the minutes can be appended to a report
summarising the findings. The report should be detailed enough for
management to judge what happened. If there have been difficulties in
reaching consensus during the review, it is advisable that the output be
signed off by members.

2.3.2 Walkthroughs

Walkthroughs should be used for the early evaluation of documents,
models, designs and code in the SR, AD and DD phases. The following

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 13
SOFTWARE VERIFICATION AND VALIDATION

2321

2.3.2.2

sections describe the walkthrough process, and are based upon the
ANSI/IEEE Std 1028-1988, 'IEEE Standard for Software Reviews and Audits'
[Ref 10].

Objectives

The objective of a walkthrough is to evaluate a specific software
element (e.g. document, source module). A walkthrough should attempt to
identify defects and consider possible solutions. In contrast with other forms
of review, secondary objectives are to educate, and to resolve stylistic
problems.

Organisation
The walkthrough process is carried out by a walkthrough team,
which is made up of:
a leader;
a secretary;
the author (or authors);
members.
The leader, helped by the secretary, is responsible for management

tasks associated with the walkthrough. The specific responsibilities of the
leader include:

nominating the walkthrough team;

organising the walkthrough and informing all participants of the date,
place and agenda of walkthrough meetings;

distribution of the review items to all participants before walkthrough
meetings;

organising as necessary the work of the walkthrough team;
chairing the walkthrough meeting;
issuing the walkthrough report.

The author is responsible for the production of the review items, and
for presenting them at the walkthrough meeting.

Members examine review items, report errors and recommend
solutions.

14

2.3.2.3

23.24

23241

2.3.24.2

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

Input

Input to the walkthrough consists of:
a statement of objectives in the form of an agenda;
the review items;
standards that apply to the review items;
specifications that apply to the review items.

Activities

The walkthrough process consists of the following activities:
preparation;

review meeting.
Preparation

The moderator or author distributes the review items when the
author decides that they are ready for walkthrough. Members should
examine the review items prior to the meeting. Concerns should be noted on
RID forms so that they can be raised at the appropriate point in the
walkthrough meeting.

Review meeting

The review meeting begins with a discussion of the agenda and the
report of the previous meeting. The author then provides an overview of the
review items.

A general discussion follows, during which issues of the structure,
function and scope of the review items should be raised.

The author then steps through the review items, such as documents
and source modules (in contrast technical reviews step through RIDs, not
the items themselves). Members raise issues about specific points as they
are reached in the walkthrough.

As the walkthrough proceeds, errors, suggested changes and
improvements are noted on RID forms by the secretary.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 15
SOFTWARE VERIFICATION AND VALIDATION

2.3.2.5

2.3.3

Output

The output from the walkthrough is a walkthrough report that should
contain the following:

a list of the members;

an identification of the review items;

a list of changes and defects noted during the walkthrough;
completed RID forms;

a list of actions, with persons responsible identified and expected dates
for completion defined;

recommendations made by the walkthrough team on how to remedy
defects and dispose of unresolved issues (e.g. further walkthrough
meetings).

This output can take the form of the minutes of the meeting, or be a
self-standing report.

Audits

Audits are independent reviews that assess compliance with
software requirements, specifications, baselines, standards, procedures,
instructions, codes and contractual and licensing requirements. To ensure
their objectivity, audits should be carried out by people independent of the
development team. The audited organisation should make resources (e.g.
development team members, office space) available to support the audit.

A 'physical audit' checks that all items identified as part of the
configuration are present in the product baseline. A ‘functional audit' checks
that unit, integration and system tests have been carried out and records
their success or failure. Other types of audits may examine any part of the
software development process, and take their name from the part of the
process being examined, e.g. a 'code audit' checks code against coding
standards.

Audits may be routine or non-routine. Examples of routine audits are
the functional and physical audits that must be performed before the release
of the software (SVV03). Non-routine audits may be initiated by the
organisation receiving the software, or management and quality assurance
personnel in the organisation producing the software.

16

2.33.1

2.3.3.2

2.3.3.3

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

The following sections describe the audit process, and are based
upon the ANSI/IEEE Std 1028-1988, 'IEEE Standard for Software Reviews
and Audits' [Ref 10].

Objectives

The objective of an audit is to verify that software products and
processes comply with standards, guidelines, specifications and
procedures.

Organisation
The audit process is carried out by an audit team, which is made up
of:
a leader;
members.
The leader is responsible for administrative tasks associated with
the audit. The specific responsibilities of the leader include:
nominating the audit team;

organising the audit and informing all participants of the schedule of
activities;

issuing the audit report.

Members interview the development team, examine review items,
report errors and recommend solutions.

Input

The following items should be input to an audit:
terms of reference defining the purpose and scope of the audit;

criteria for deciding the correctness of products and processes such as
contracts, plans, specifications, procedures, guidelines and standards;

software products;
software process records;

management plans defining the organisation of the project being
audited.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 17
SOFTWARE VERIFICATION AND VALIDATION

2.3.3.4

2.3.3.5

Activities

The team formed to carry out the audit should produce a plan that
defines the:

products or processes to be examined;

schedule of audit activities;

sampling criteria, if a statistical approach is being used;

criteria for judging correctness (e.g. the SCM procedures might be
audited against the SCMP);

checklists defining aspects to be audited;

audit staffing plan;

date, time and place of the audit kick-off meeting.

The audit team should prepare for the audit by familiarising
themselves with the organisation being audited, its products and its
processes. All the team must understand the audit criteria and know how to
apply them. Training may be necessary.

The audit team then examines the software products and
processes, interviewing project team members as necessary. This is the
primary activity in any audit. Project team members should co-operate fully
with the auditors. Auditors should fully investigate all problems, document
them, and make recommendations about how to rectify them. If the system
is very large, the audit team may have to employ a sampling approach.

When their investigations are complete, the audit team should issue
a draft report for comment by the audited organisation, so that any
misunderstandings can be eliminated. After receiving the audited
organisation's comments, the audit team should produce a final report. A
follow-up audit may be required to check that actions are implemented.

Output

The output from an audit is an audit report that:

identifies the organisation being audited, the audit team, and the date
and place of the audit;

defines the products and processes being audited;

defines the scope of the audit, particularly the audit criteria for products
and processes being audited;

states conclusions;
makes recommendations;
lists actions.

18

2.4

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

TRACING

Tracing is 'the act of establishing a relationship between two or
more products of the development process; for example, to establish the
relationship between a given requirement and the design element that
implements that requirement' [Ref 6]. There are two kinds of traceability:

forward traceability;
backward traceability.

Forward traceability requires that each input to a phase must be
traceable to an output of that phase (SVV01). Forward traceability shows
completeness, and is normally done by constructing traceability matrices.
These are normally implemented by tabulating the correspondence between
input and output (see the example in ESA PSS-05-03, Guide to Software
Requirements Definition [Ref 2]). Missing entries in the matrix display
incompleteness quite vividly. Forward traceability can also show duplication.
Inputs that trace to more than one output may be a sign of duplication.

Backward traceability requires that each output of a phase must be
traceable to an input to that phase (SVV02). Outputs that cannot be traced
to inputs are superfluous, unless it is acknowledged that the inputs
themselves were incomplete. Backward tracing is normally done by
including with each item a statement of why it exists (e.g. source of a
software requirement, requirements for a software component).

During the software life cycle it is necessary to trace:
user requirements to software requirements and vice-versa,
software requirements to component descriptions and vice versa;
integration tests to architectural units and vice-versa;
unit tests to the modules of the detailed design;
system tests to software requirements and vice-versa;
acceptance tests to user requirements and vice-versa.

To support traceability, all components and requirements are
identified. The SVVP should define how tracing is to be done. References to
components and requirements should include identifiers. The SCMP defines
the identification conventions for documents and software components. The

SVVP should define additional identification conventions to be used within
documents (e.g. requirements) and software components.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 19
SOFTWARE VERIFICATION AND VALIDATION

2.5

2.6

FORMAL PROOF

Formal proof attempts to demonstrate logically that software is
correct. Whereas a test empirically demonstrates that specific inputs result
in specific outputs, formal proofs logically demonstrate that all inputs
meeting defined preconditions will result in defined postconditions being
met.

Where practical, formal proof of the correctness of software may be
attempted. Formal proof techniques are often difficult to justify because of
the additional effort required above the necessary verification techniques of
reviewing, tracing and testing.

The difficulty of expressing software requirements and designs in
the mathematical form necessary for formal proof has prevented the wide
application of the technique. Some areas where formal methods have been
successful are for the specification and verification of:

protocols;

secure systems.

Good protocols and very secure systems depend upon having
precise, logical specifications with no loopholes.

Ideally, if formal techniques can prove that software is correct,
separate verification (e.g. testing) should not be necessary. However,
human errors in proofs are still possible, and ways should be sought to
avoid them, for example by ensuring that all proofs are checked
independently.

Sections 3.3 and 3.4 discuss Formal Methods and formal Program
Verification Techniques.

TESTING

A test is 'an activity in which a system or component is executed
under specified conditions, the results are observed or recorded, and an
evaluation is made of some aspect of the system or component' [Ref 6].
Compared with other verification techniques, testing is the most direct
because it executes the software, and is therefore always to be preferred.
When parts of a specification cannot be verified by a test, another
verification technique (e.g. inspection) should be substituted in the test plan.
For example a test of a portability requirement might be to run the software

20

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

in the alternative environment. If this not possible, the substitute approach
might be to inspect the code for statements that are not portable.

Testing skills are just as important as the ability to program, design
and analyse. Good testers find problems quickly. Myers defines testing as
'the process of executing a program with the intent of finding errors' [Ref 14].
While this definition is too narrow for ESA PSS-05-0, it expresses the
sceptical, critical attitude required for effective testing.

The testability of software should be evaluated as it is designed, not
when coding is complete. Designs should be iterated until they are testable.
Complexity is the enemy of testability. When faced with a complex design,
developers should ask themselves:

can the software be simplified without compromising its capabilities?
are the resources available to test software of this complexity?

Users, managers and developers all need to be assured that the
software does what it is supposed to do. An important objective of testing is
to show that software meets its specification. The 'V diagram'in Figure 2.2
shows that unit tests compare code with its detailed design, integration
tests compare major components with the architectural design, system tests
compare the software with the software requirements, and acceptance tests
compare the software with the user requirements. All these tests aim to
'verify' the software, i.e. show that it truly conforms to specifications.

In ESA PSS-05-0 test plans are made as soon as the corresponding
specifications exist. These plans outline the approach to testing and are
essential for estimating the resources required to complete the project.
Tests are specified in more detail in the DD phase. Test designs, test cases
and test procedures are defined and included in the SVVP. Tests are then
executed and results recorded.

Figure 2.6 shows the testing activities common to unit, integration,
system and acceptance tests. Input at the top left of the figure are the
Software Under Test (SUT), the test plans in the SVVP, and the URD, SRD,
ADD and DDD that define the baselines for testing against. This sequence
of activities is executed for unit testing, integration testing, system testing
and acceptance testing in turn.

The following paragraphs address each activity depicted in Figure
2.6. Section 4.5 discusses the tools needed to support the activities.

1. The 'specify tests' activity takes the test plan in the SVVP, and the
product specification in one of the URD, SRD, ADD or DDD and

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 21
SOFTWARE VERIFICATION AND VALIDATION

URD & SVVP/AT/Test Plan
SRD & SVVP/ST/Test Plan
ADD & SVVP/IT/Test Plan

DDD & SVVP/UT/Test Plan

[

Speci
SuT pecify

| tests

produces a test design for each requirement or component. Each
design will imply a family of test cases. The Software Under Test (SUT)
is required for the specification of unit tests.

The 'make test software' activity takes the test case specifications and
produces the test code (stubs, drivers, simulators, harnesses), input
data files and test procedures needed to run the tests.

The 'link SUT" activity takes the test code and links it with the SUT, and
(optionally) existing tested code, producing the executable SUT.

The 'run tests' activity executes the tests according to the test
procedures, by means of the input data. The output data produced may
include coverage information, performance information, or data
produced by the normal functioning of the SUT.

Test

cases
Make test Test
software ﬂ Code

Link SUT Executable

Tested Code

i sut

Test Test
Proc's Runtests | Output

Input Data » Data

Data

Analyse Test results/coverage
coverage

Analyse Test results/performance
performance

Test results

Store J

test data Old
Output
Data

Check
outputs

Expected Output Data

jVV \J

Test Data = Input Data + Expected Output Data

Figure 2.6: Testing activities

The ‘analyse coverage' activity checks that the tests have in fact
executed those parts of the SUT that they were intended to test.

The ‘'analyse performance' activity studies the resource consumption of
the SUT (e.g. CPU time, disk space, memory).

The 'check outputs' activity compares the outputs with the expected
output data or the outputs of previous tests, and decides whether the
tests have passed or failed.

22

2.6.1

26.1.1

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

8. The 'store test data' activity stores test data for reruns of tests. Test
output data needs to be retained as evidence that the tests have been
performed.

The following sections discuss the specific approaches to unit
testing, integration testing, system testing and acceptance testing. For each
type of testing sections are provided on:

test planning;

test design;

test case specification;
test procedure definition;
test reporting.

Unit tests

A 'unit' of software is composed of one or more modules. In ESA
PSS-05-0, 'unit testing' refers to the process of testing modules against the
detailed design. The inputs to unit testing are the successfully compiled
modules from the coding process. These are assembled during unit testing
to make the largest units, i.e. the components of architectural design. The
successfully tested architectural design components are the outputs of unit
testing.

An incremental assembly sequence is normally best. When the
sequence is top-down, the unit grows during unit testing from a kernel
module to the major component required in the architectural design. When
the sequence is bottom-up, units are assembled from smaller units.
Normally a combination of the two approaches is used, with the objective of
minimising the amount of test software, measured both in terms of the
number of test modules and the number of lines of test code. This enables
the test software to be easily verified by inspection.

Studies of traditional developments show that approximately 65% of
bugs can be caught in unit testing, and that half these bugs will be caught
by ‘white-box' tests [Ref 12]. These results show that unit testing is the most
effective type of testing for removing bugs. This is because less software is
involved when the test is performed, and so bugs are easier to isolate.

Unit test planning

The first step in unit testing is to construct a unit test plan and
document it in the SVVP (SVV18). This plan is defined in the DD phase and

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 23
SOFTWARE VERIFICATION AND VALIDATION

2.6.1.2

should describe the scope, approach, resources and schedule of the
intended unit tests. The scope of unit testing is to verify the design and
implementation of all components from the lowest level defined in the
detailed design up to and including the lowest level in the architectural
design. The approach should outline the types of tests, and the amounts of
testing, required.

The amount of unit testing required is dictated by the need to
execute every statement in a module at least once (DD06). The simplest
measure of the amount of testing required is therefore just the number of
lines of code.

Execution of every statement in the software is normally not
sufficient, and coverage of every branch in the logic may be required. The
amount of unit testing then depends principally on the complexity of the
software. The 'Structured Testing' method (see Section 3.6) uses the
cyclomatic complexity metric to evaluate the testability of module designs.
The number of test cases necessary to ensure that every branch in the
module logic is covered during testing is equivalent to the cyclomatic
complexity of the module. The Structured Testing method is strongly
recommended when full branch coverage is a requirement.

Unit test design

The next step in unit testing is unit test design (SVV19). Unit test
designs should specify the details of the test approach for each software
component defined in the DDD, and identify the associated test cases and
test procedures. The description of the test approach should state the
assembly sequence for constructing the architectural design units, and the
types of tests necessary for individual modules (e.g. white-box, black-box).

The three rules of incremental assembly are:

assemble the architectural design units incrementally, module-by-
module if possible, because problems that arise in a unit test are most
likely to be related to the module that has just been added;

introduce producer modules before consumer modules, because the
former can provide control and data flows required by the latter.

ensure that each step is reversible, so that rollback to a previous stage
in the assembly is always possible.

A simple example of unit test design is shown in Figure 2.6.1.2A.
The unit Ul is a major component of the architectural design. Ul is
composed of modules M1, M2 and M3. Module M1 calls M2 and then M3,

24

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

as shown by the structure chart. Two possible assembly sequences are
shown. The sequence starting with M1 is ‘'top-down' and the sequence
starting with M2 is 'bottom-up'. Figure 2.6.1.2B shows that data flows from
M2 to M3 under the control of M1.

Each sequence in Figure 2.6.1.2A requires two test modules. The
top-down sequence requires the two stub modules S2 and S3 to simulate
M2 and M3. The bottom-up sequence requires the drivers D2 and D3 to
simulate M1, because each driver simulates a different interface. If M1, M2
and M3 were tested individually before assembly, four drivers and stubs
would be required. The incremental approach only requires two.

The rules of incremental assembly argue for top-down assembly
instead of bottom-up because the top-down sequence introduces the:
modules one-by-one;

producer modules before consumer modules (i.e. M1 before M2 before
M3).

ul

M1

AN

M2 M3
D2 D3 M1
Bottom-up / \ / \
M2 M3 M2 M3
M1 M1 M1
Top-down / \ / \ / \
S2 S3 M2 S3 M2 M3
Step 1 Step 2 Step 3

Figure 2.6.1.2A: Example of unit test design

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 25
SOFTWARE VERIFICATION AND VALIDATION

control flow

M 1 control flow

M 2 data flow

M3

Y

Figure 2.6.1.2B: Data flow dependencies between the modules of U1
2.6.1.2.1 White-box unit tests

The objective of white-box testing is to check the internal logic of the
software. White-box tests are sometimes known as 'path tests', 'structure
tests' or 'logic tests'. A more appropriate title for this kind of test is 'glass-
box test, as the engineer can see almost everything that the code is doing.

White-box unit tests are designed by examining the internal logic of
each module and defining the input data sets that force the execution of
different paths through the logic. Each input data set is a test case.

Traditionally, programmers used to insert diagnostic code to follow
the internal processing (e.g. statements that print out the values of program
variables during execution). Debugging tools that allow programmers to
observe the execution of a program step-by-step in a screen display make
the insertion of diagnostic code unnecessary, unless manual control of
execution is not appropriate, such as when real-time code is tested.

When debugging tools are used for white-box testing, prior
preparation of test cases and procedures is still necessary. Test cases and
procedures should not be invented during debugging. The Structured
Testing method (see Section 3.6) is the best known method for white-box
unit testing. The cyclomatic complexity value gives the number of paths that
must be executed, and the 'baseline method' is used to define the paths.
Lastly, input values are selected that will cause each path to be executed.
This is called 'sensitising the path'.

A limitation of white-box testing is its inability to show missing logic.
Black-box tests remedy this deficiency.

26

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

2.6.1.2.2 Black-box unit tests

The objective of black-box tests is to verify the functionality of the
software. The tester treats the module as 'black-box' whose internals cannot
be seen. Black-box tests are sometimes called 'function tests'.

Black-box unit tests are designed by examining the specification of
each module and defining input data sets that will result in different
behaviour (e.g. outputs). Each input data set is a test case.

Black-box tests should be designed to exercise the software for its
whole range of inputs. Most software items will have many possible input
data sets and using them all is impractical. Test designers should partition
the range of possible inputs into 'equivalence classes'. For any given error,
input data sets in the same equivalence class will produce the same error
[Ref 14].

lower upper
boundary boundary
value value
illegal values nominal values illegal values
| ot .
I T S A S O S O N
-1 0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 2.6.1.2.2: Equivalence partitioning example

Consider a module that accepts integers in the range 1 to 10 as
input, for example. The input data can be partitioned into five equivalence
classes as shown in Figure 2.6.1.2.2. The five equivalence classes are the
illegal values below the lower boundary, such as 0, the lower boundary value
1, the nominal values 2 to 9, the upper boundary value 10, and the illegal
values above the upper boundary, such as 11.

Output values can be used to generate additional equivalence
classes. In the example above, if the output of the routine generated the
result TRUE for input numbers less than or equal to 5 and FALSE for
numbers greater than 5, the nominal value equivalence class should be split
into two subclasses:

nominal values giving a TRUE result, such as 3;
boundary nominal value, i.e. 5;

nominal values giving a FALSE result, such as 7.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 27
SOFTWARE VERIFICATION AND VALIDATION

Equivalence classes may be defined by considering all possible
data types. For example the module above accepts integers only. Test
cases could be devised using real, logical and character data.

Having defined the equivalence classes, the next step is to select
suitable input values from each equivalence class. Input values close to the
boundary values are normally selected because they are usually more
effective in causing test failures (e.g. 11 might be expected to be more likely
to produce a test failure than 99).

Although equivalence partitioning combined with boundary-value
selection is a useful technique for generating efficient input data sets, it will
not expose bugs linked to combinations of input data values. Techniques
such as decision tables [Ref 12] and cause-effect graphs [Ref 14] can be
very useful for defining tests that will expose such bugs.

1 2 3 4
open_pressed TRUE TRUE FALSE FALSE
close_pressed TRUE FALSE TRUE FALSE

action ? OPEN CLOSE ?

Table 2.6.1.2.2: Decision table example

Table 2.6.1.2.2 shows the decision table for a module that has
Boolean inputs that indicate whether the OPEN or CLOSE buttons of an
elevator door have been pressed. When open_pressed is true and
close_pressed is false, the action is OPEN. When close_pressed is true and
open_pressed is false, the action is CLOSE. Table 2.6.1.2.2 shows that the
outcomes for when open_pressed and close_pressed are both true and
both false are undefined. Additional test cases setting open_pressed and
close_pressed both true and then both false are likely to expose problems.

A useful technique for designing tests for real-time systems is the
state-transition table. These tables define what messages can be processed
in each state. For example, sending the message ‘'open doors' to an
elevator in the state 'moving' should be rejected. Just as with decision
tables, undefined outcomes shown by blank table entries make good
candidates for testing.

28

2.6.1.2.3

2.6.1.3

26.1.4

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

Decision tables, cause-effect graphs and state-transition diagrams
are just three of the many analysis techniques that can be employed for test
design. After tests have been devised by means of these techniques, test
designers should examine them to see whether additional tests are needed,
their judgement being based upon their experience of similar systems or
their involvement in the development of the system. This technique, called
‘error guessing' [Ref 14], should be risk-driven, focusing on the parts of the
design that are novel or difficult to verify by other means, or where quality
problems have occurred before.

Test tools that allow the automatic creation of drivers, stubs and test
data sets help make black-box testing easier (see Chapter 4). Such tools
can define equivalence classes based upon boundary values in the input,
but the identification of more complex test cases requires knowledge of the
how the software should work.

Performance tests

The DDD may have placed resource constraints on the performance
of a module. For example a module may have to execute within a specified
elapsed time, or use less than a specified amount of CPU time, or consume
less than a specified amount of memory. Compliance with these constraints
should be tested as directly as possible, for example by means of:

performance analysis tools;
diagnostic code;

system monitoring tools.
Unit test case definition

Each unit test design will use one or more unit test cases, which
must also be documented in the SVVP (SVV20). Test cases should specify
the inputs, predicted results and execution conditions for a test case.

Unit test procedure definition

The unit test procedures must be described in the SVVP (SVV21).
These should provide a step-by-step description of how to carry out each
test case. One test procedure may execute one or more test cases. The
procedures may use executable 'scripts' that control the operation of test
tools. With the incremental approach, the input data required to test a
module may be created by executing an already tested module (e.g. M2 is
used to create data for M1 and M3 in the example above). The test
procedure should define the steps needed to create such data.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 29
SOFTWARE VERIFICATION AND VALIDATION

2.6.1.5

2.6.2

26.2.1

Unit test reporting

Unit test results may be reported in a variety of ways. Some
common means of recording results are:

unit test result forms, recording the date and outcome of the test cases
executed by the procedure;

execution logfile.
Integration tests

A software system is composed of one or more subsystems, which
are composed of one or more units (which are composed of one or more
modules). In ESA PSS-05-0, 'integration testing' refers to the process of
testing units against the architectural design. During integration testing, the
architectural design units are integrated to make the system.

The ‘function-by-function' integration method described in Section
3.3.2.1 of ESA PSS-05-05 'Guide to the Detailed Design and Production
Phase' [Ref 3] should be used to integrate the software. As with the
approach described for unit testing, this method minimises the amount of
test software required. The steps are to:

1. select the functions to be integrated;
2. identify the components that carry out the functions;

3. order the components by the number of dependencies (i.e. fewest
dependencies first);

4. create a driver to simulate the input of the component later in the order
when a component depends on another later in the order;

5. introduce the components with fewest dependencies first.

Though the errors found in integration testing should be much fewer
than those found in unit testing, they are more time-consuming to diagnose
and fix. Studies of testing [Ref 15] have shown architectural errors can be as
much as thirty times as costly to repair as detailed design errors.

Integration test planning

The first step in integration testing is to construct an integration test
plan and document it in the SVVP (SVV17). This plan is defined in the AD
phase and should describe the scope, approach, resources and schedule
of the intended integration tests.

30

2.6.2.2

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

The scope of integration testing is to verify the design and
implementation of all components from the lowest level defined in the
architectural design up to the system level. The approach should outline the
types of tests, and the amounts of testing, required.

The amount of integration testing required is dictated by the need
to:

check that all data exchanged across an interface agree with the data
structure specifications in the ADD (DDO07);

confirm that all the control flows in the ADD have been implemented
(DDO08).

The amount of control flow testing required depends on the
complexity of the software. The Structured Integration Testing method (see
Section 3.7) uses the integration complexity metric to evaluate the testability
of architectural designs. The integration complexity value is the number of
integration tests required to obtain full coverage of the control flow. The
Structured Integration Testing method is strongly recommended for
estimating the amount of integration testing.

Integration test design

The next step in integration testing is integration test design
(SWV19). This and subsequent steps are performed in the DD phase,
although integration test design may be attempted in the AD phase.
Integration test designs should specify the details of the test approach for
each software component defined in the ADD, and identify the associated
test cases and test procedures.

The description of the test approach should state the:
integration sequence for constructing the system;

types of tests necessary for individual components (e.g. white-box,
black-box).

With the function-by-function method, the system grows during
integration testing from the kernel units that depend upon few other units,
but are depended upon by many other units. The early availability of these
kernel units eases subsequent testing.

For incremental delivery, the delivery plan will normally specify what
functions are required in each delivery. Even so, the number of
dependencies can be used to decide the order of integration of components
in each delivery.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 31
SOFTWARE VERIFICATION AND VALIDATION

26.221

control flow

control flow

P1

control flow

0 dependencies

data flow

P2

1 dependency

data flow

P3

2 dependencies

P4

data flow

3 dependencies

Figure 2.6.2A: Incremental integration sequences

Figure 2.6.2A shows a system composed of four programs P1, P2,
P3 and P4. P1 is the 'program manager, providing the user interface and
controlling the other programs. Program P2 supplies data to P3, and both
P2 and P3 supply data to P4. User inputs are ignored. P1 has zero
dependencies, P2 has one, P3 has two and P4 has three. The integration
sequence is therefore P1, P2, P3 and then P4.

White-box integration tests

White-box integration tests should be defined to verify the data and
control flow across interfaces between the major components defined in the
ADD (DDO7 and DDO08). For file interfaces, test programs that print the
contents of the files provide the visibility required. With real-time systems,
facilities for trapping messages and copying them to a log file can be
employed. Debuggers that set break points at interfaces can also be useful.
When control or data flow traverses an interface where a break point is set,
control is passed to the debugger, enabling inspection and logging of the
flow.

The Structured Integration Testing method (see Section 3.7) is the
best known method for white-box integration testing. The integration
complexity value gives the number of control flow paths that must be
executed, and the 'design integration testing method' is used to define the
control flow paths. The function-by-function integration method (see Section

32

2.6.2.2.2

2.6.2.2.3

2.6.2.3

26.24

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

2.6.2) can be used to define the order of testing the required control flow
paths.

The addition of new components to a system often introduces new
execution paths through it. Integration test design should identify paths
suitable for testing and define test cases to check them. This type of path
testing is sometimes called 'thread testing'. All new control flows should be
tested.

Black-box integration tests

Black-box integration tests should be used to fully exercise the
functions of each component specified in the ADD. Black-box tests may
also be used to verify that data exchanged across an interface agree with
the data structure specifications in the ADD (DDO07).

Performance tests

The ADD may have placed resource constraints on the performance
of a unit. For example a program may have to respond to user input within a
specified elapsed time, or process a defined number of records within a
specified CPU time, or occupy less than a specified amount of disk space or
memory. Compliance with these constraints should be tested as directly as
possible, for example by means of:

performance analysis tools;
diagnostic code;

system monitoring tools.
Integration test case definition

Each integration test design will use one or more integration test
cases, which must also be documented in the SVVP (SVV20). Test cases
should specify the inputs, predicted results and execution conditions for a
test case.

Integration test procedure definition

The integration test procedures must be described in the SVVP
(SVV21). These should provide a step-by-step description of how to carry
out each test case. One test procedure may execute one or more test
cases. The procedures may use executable 'scripts' that control the
operation of test tools.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 33
SOFTWARE VERIFICATION AND VALIDATION

2.6.2.5

2.6.3

2.6.3.1

2.6.3.2

Integration test reporting

Integration test results may be reported in a variety of ways. Some
common means of recording results are:

integration test result forms, recording the date and outcome of the test
cases executed by the procedure;

execution logfile.
System tests

In ESA PSS-05-0, 'system testing' refers to the process of testing
the system against the software requirements. The input to system testing is
the successfully integrated system.

Wherever possible, system tests should be specified and
performed by an independent testing team. This increases the objectivity of
the tests and reduces the likelihood of defects escaping the software
verification and validation net.

System test planning

The first step in system testing is to construct a system test plan
and document it in the SVVP (SVV14). This plan is defined in the SR phase
and should describe the scope, approach, resources and schedule of the
intended system tests. The scope of system testing is to verify compliance
with the system objectives, as stated in the SRD (DD09). System testing
must continue until readiness for transfer can be demonstrated.

The amount of testing required is dictated by the need to cover all
the software requirements in the SRD. A test should be defined for every
essential software requirement, and for every desirable requirement that has
been implemented.

System test design

The next step in system testing is system test design (SVV19). This
and subsequent steps are performed in the DD phase, although system test
design may be attempted in the SR and AD phases. System test designs
should specify the details of the test approach for each software
requirement specified in the SRD, and identify the associated test cases and
test procedures. The description of the test approach should state the types
of tests necessary (e.g. function test, stress test etc).

34

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

Knowledge of the internal workings of the software should not be
required for system testing, and so white-box tests should be avoided.
Black-box and other types of test should be used wherever possible. When
a test of a requirement is not possible, an alternative method of verification
should be used (e.g. inspection).

System testing tools can often be used for problem investigation
during the TR and OM phases. Effort invested in producing efficient easy-to-
use diagnostic tools at this stage of development is often worthwhile.

If an incremental delivery or evolutionary development approach is
being used, system tests of each release of the system should include
regression tests of software requirements verified in earlier releases.

The SRD will contain several types of requirements, each of which
needs a distinct test approach. The following subsections discuss possible
approaches.

2.6.3.2.1 Function tests

2.6.3.2.2

System test design should begin by designing black-box tests to
verify each functional requirement. Working from the functional requirements
in the SRD, techniques such as decision tables, state-transition tables and
error guessing are used to design function tests.

Performance tests
Performance requirements should contain quantitative statements
about system performance. They may be specified by stating the:
worst case that is acceptable;
nominal value, to be used for design;

best case value, to show where growth potential is needed.

System test cases should be designed to verify:
that all worst case performance targets have been met;
that nominal performance targets are usually achieved,;
whether any best-case performance targets have been met.

In addition, stress tests (see Section 2.6.3.2.13) should be designed
to measure the absolute limits of performance.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 35
SOFTWARE VERIFICATION AND VALIDATION

2.6.3.2.3

2.6.3.2.4

Interface tests

System tests should be designed to verify conformance to external
interface requirements. Interface Control Documents (ICDs) form the
baseline for testing external interfaces. Simulators and other test tools will be
necessary if the software cannot be tested in the operational environment.

Tools (not debuggers) should be provided to:

convert data flows into a form readable by human operators;

edit the contents of data stores.
Operations tests

Operations tests include all tests of the user interface, man machine
interface, or human computer interaction requirements. They also cover the
logistical and organisational requirements. These are essential before the
software is delivered to the users.

Operations tests should be designed to show up deficiencies in
usability such as:
instructions that are difficult to follow;
screens that are difficult to read;
commonly-used operations with too many steps;
meaningless error messages.
The operational requirements may have defined the time required to
learn and operate the software. Such requirements can be made the basis
of straightforward tests. For example a test of usability might be to measure

the time an operator with average skill takes to learn how to restart the
system.

Other kinds of tests may be run throughout the system-testing
period, for example:
do all warning messages have a red background?
is there help on this command?

If there is a help system, every topic should be systematically
inspected for accuracy and appropriateness.

Response times should normally be specified in the performance
requirements (as opposed to operational requirements). Even so, system

36

2.6.3.2.5

2.6.3.2.6

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

tests should verify that the response time is short enough to make the
system usable.

Resource tests

Requirements for the usage of resources such as CPU time, storage
space and memory may have been set in the SRD. The best way to test for
compliance to these requirements is to allocate these resources and no
more, so that a failure occurs if a resource is exhausted. If this is not suitable
(e.g. it is usually not possible to specify the maximum size of a particular
file), alternative approaches are to:

use a system monitoring tool to collect statistics on resource
consumption;

check directories for file space used.
Security tests

Security tests should check that the system is protected against
threats to confidentiality, integrity and availability.

Tests should be designed to verify that basic security mechanisms
specified in the SRD have been provided, for example:
password protection;
resource locking.
Deliberate attempts to break the security mechanisms are an
effective way of detecting security errors. Possible tests are attempts to:
access the files of another user;
break into the system authorisation files;
access a resource when it is locked;
stop processes being run by other users.
Security problems can often arise when users are granted system

privileges unnecessarily. The Software User Manual should clearly state the
privileges required to run the software.

Experience of past security problems should be used to check new
systems. Security loopholes often recur.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 37
SOFTWARE VERIFICATION AND VALIDATION

2.6.3.2.7

2.6.3.2.8

2.6.3.2.9

Portability tests

Portability requirements may require the software to be run in a
variety of environments. Attempts should be made to verify portability by
running a representative selection of system tests in all the required
environments. If this is not possible, indirect techniques may be attempted.
For example if a program is supposed to run on two different platforms, a
programming language standard (e.g. ANSI C) might be specified and a
static analyser tool used to check conformance to the standard.
Successfully executing the program on one platform and passing the static
analysis checks might be adequate proof that the software will run on the
other platform.

Reliability tests

Reliability requirements should define the Mean Time Between
Failure (MTBF) of the software. Separate MTBF values may have been
specified for different parts of the software.

Reliability can be estimated from the software problems reported
during system testing. Tests designed to measure the performance limits
should be excluded from the counts, and test case failures should be
categorised (e.g. critical, non-critical). The mean time between failures can
then be estimated by dividing the system testing time by the number of
critical failures.

Maintainability tests

Maintainability requirements should define the Mean Time To Repair
(MTTR) of the software. Separate MTTR values may have been specified for
different parts of the software.

Maintainability should be estimated by averaging the difference
between the dates of Software Problem Reports (SPRs) reporting critical
failures that occur during system testing, and the corresponding Software
Modification Reports (SMRSs) reporting the completion of the repairs.

Maintainability requirements may have included restrictions on the
size and complexity of modules, or even the use of the programming
language. These should be tested by means of a static analysis tool. If a
static analysis tool is not available, samples of the code should be manually
inspected.

38 ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

2.6.3.2.10 Safety tests

Safety requirements may specify that the software must avoid injury
to people, or damage to property, when it fails. Compliance to safety
requirements can be tested by:

deliberately causing problems under controlled conditions and
observing the system behaviour (e.g. disconnecting the power during
system operations);

observing system behaviour when faults occur during tests.
Simulators may have to be built to perform safety tests.

Safety analysis classifies events and states according to how much
of a hazard they cause to people or property. Hazards may be catastrophic
(i.e. life-threatening), critical, marginal or negligible [Ref 24]. Safety
requirements may identify functions whose failure may cause a catastrophic
or critical hazard. Safety tests may require exhaustive testing of these
functions to establish their reliability.

2.6.3.2.11 Miscellaneous tests

An SRD may contain other requirements for:
documentation (particularly the SUM);
verification;
acceptance testing;
quality, other than reliability, maintainability and safety.

It is wusually not possible to test for compliance to these
requirements, and they are normally verified by inspection.

2.6.3.2.12 Regression tests

Regression testing is 'selective retesting of a system or component,
to verify that modifications have not caused unintended effects, and that the
system or component still complies with its specified requirements' [Ref 6].

Regression tests should be performed before every release of the
software in the OM phase. If an incremental delivery or evolutionary
development approach is being used, regression tests should be performed
to verify that the capabilities of earlier releases are unchanged.

Traditionally, regression testing often requires much effort,
increasing the cost of change and reducing its speed. Test tools that

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 39
SOFTWARE VERIFICATION AND VALIDATION

automate regression testing are now widely available and can greatly
increase the speed and accuracy of regression testing (see Chapter 4).
Careful selection of test cases also reduces the cost of regression testing,
and increases its effectiveness.

2.6.3.2.13 Stress tests

2.6.3.3

2.6.3.4

Stress tests 'evaluate a system or software component at or
beyond the limits of its specified requirements' [Ref 6]. The most common
kind of stress test is to measure the maximum load the SUT can sustain for
a time, for example the:

maximum number of activities that can be supported simultaneously;

maximum quantity of data that can be processed in a given time.

Another kind of stress test, sometimes called a 'volume test' [Ref
14], exercises the SUT with an abnormally large quantity of input data. For
example a compiler might be fed a source file with very many lines of code,
or a database management system with a file containing very many records.
Time is not of the essence in a volume test.

Most software has capacity limits. Testers should examine the
software documentation for statements about the amount of input the
software can accept, and design tests to check that the stated capacity is
provided. In addition, testers should look for inputs that have no constraint
on capacity, and design tests to check whether undocumented constraints
do exist.

System test case definition

The system test cases must be described in the SVVP (SVV20).
These should specify the inputs, predicted results and execution conditions
for a test case.

System test procedure definition

The system test procedures must be described in the SVVP
(SVV21). These should provide a step-by-step description of how to carry
out each test case. One test procedure may execute one or more test
cases. The procedures may use executable 'scripts' that control the
operation of test tools.

40

2.6.3.5

2.6.4

2641

2.6.4.2

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

System test reporting

System test results may be reported in a variety of ways. Some
common means of recording results are:

system test result forms recording the date and outcome of the test
cases executed by the procedure;

execution logfile.

System test results should reference any Software Problem Reports
raised during the test.

Acceptance tests

In ESA PSS-05-0, ‘'acceptance testing' refers to the process of
testing the system against the user requirements. The input to acceptance
testing is the software that has been successfully tested at system level.

Acceptance tests should always be done by the user or their
representatives. If this is not possible, they should witness the acceptance
tests and sign off the results.

Acceptance test planning

The first step in acceptance testing is to construct an acceptance
test plan and document it in the SVVP (SVV11). This plan is defined in the
UR phase and should describe the scope, approach, resources and
schedule of the intended acceptance tests. The scope of acceptance
testing is to validate that the software is compliant with the user
requirements, as stated in the URD. Acceptance tests are performed in the
TR phase, although some acceptance tests of quality, reliability,
maintainability and safety may continue into the OM phase until final
acceptance is possible.

The amount of testing required is dictated by the need to cover all
the user requirements in the URD. A test should be defined for every
essential user requirement, and for every desirable requirement that has
been implemented

Acceptance test design

The next step in acceptance testing is acceptance test design
(SWV19). This and subsequent steps are performed in the DD phase,
although acceptance test design may be attempted in the UR, SR and AD
phases. Acceptance test designs should specify the details of the test

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 41
SOFTWARE VERIFICATION AND VALIDATION

26421

2.6.4.2.2

2.6.4.3

approach for a user requirement, or combination of user requirements, and
identify the associated test cases and test procedures. The description of
the test approach should state the necessary types of tests.

Acceptance testing should require no knowledge of the internal
workings of the software, so white-box tests cannot be used.

If an incremental delivery or evolutionary development approach is
being used, acceptance tests should only address the user requirements of
the new release. Regression tests should have been performed in system
testing.

Dry-runs of acceptance tests should be performed before transfer of
the software. Besides exposing any faults that have been overlooked, dry-
runs allow the acceptance test procedures to be checked for accuracy and
ease of understanding.

The specific requirements in the URD should be divided into
capability requirements and constraint requirements. The following
subsections describe approaches to testing each type of user requirement.

Capability tests

Capability requirements describe what the user can do with the
software. Tests should be designed that exercise each capability. System
test cases that verify functional, performance and operational requirements
may be reused to validate capability requirements.

Constraint tests

Constraint requirements place restrictions on how the software can
be built and operated. They may predefine external interfaces or specify
attributes such as adaptability, availability, portability and security. System
test cases that verify compliance with requirements for interfaces, resources,
security, portability, reliability, maintainability and safety may be reused to
validate constraint requirements.

Acceptance test case specification

The acceptance test cases must be described in the SVVP (SVV20).
These should specify the inputs, predicted results and execution conditions
for a test case.

42

26.4.4

2.6.4.5

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION

Acceptance test procedure specification

The acceptance test procedures must be described in the SVVP
(SVV21). These should provide a step-by-step description of how to carry
out each test case. The effort required of users to validate the software
should be minimised by means of test tools.

Acceptance test reporting
Acceptance test results may be reported in a variety of ways. Some

common means of recording results are:

acceptance test result forms recording the date and outcome of the test
cases executed by the procedure;

execution logfile.

Acceptance test results should reference any Software Problem
Reports raised during the test.

ESA PSS-05-10 Issue 1 Revision 1 (March 1995) 43
SOFTWARE VERIFICATION AND VALIDATION METHODS

3.1

3.2

CHAPTER 3
SOFTWARE VERIFICATION AND VALIDATION METHODS

INTRODUCTION

This chapter discusses methods for software verification and
validation that may be used to enhance the basic approach described in
Chapter 2. The structure of this chapter follows that of the previous chapter,
as shown in Table 3.1. Supplementary methods are described for reviews,
formal proof and testing.

Activity Supplementary method
review software inspection
tracing none

formal methods

formal proof . :
program verification techniques

structured testing

testin) .)
9 structured integration testing

Table 3.1: Structure of Chapter 3

SOFTWARE INSPECTIONS

Software inspections can be used for the detection of defects in
detailed designs before coding, and in code before testing. They may also
be used to verify test designs, test cases and test procedures. More
generally, inspections can be used for verifying the products of any
development process that is defined in terms of:

operations (e.g. 'code module);
exit criteria (e.g. 'module successfully compiles)).
Software inspections are efficient. Projects can detect over 50% of

the total number of defects introduced in development by doing them [Ref
21, 22].

Software inspections are economical because they result in
significant reductions in both the number of defects and the cost of their

44

3.2.1

3.2.2

ESA PSS-05-10 Issue 1 Revision 1 (March 1995)
SOFTWARE VERIFICATION AND VALIDATION METHODS

removal. Detection of a defect as close as possible to the time of its
introduction results in:

an increase in the developers' awareness of the reason for the defect's
occurrence, so that the likelihood that a similar defect will recur again is
reduced,;

reduced effort in locating the defect, since no effort is required to
diagnose which component, out of many possible components,
contains the defect.

Software inspections are formal processes. They differ from

walkthroughs (see Section 2.3.2) by:

repeating the process until an acceptable defect rate (e.g. number