
 IOTA TUTORIAL 27
mobilefish.com

Why normalizedBundleHash?  
Why not reuse an address for outgoing txs?

v1.0.0



INTRO
mobilefish.com

• In IOTA tutorial 6 I have explained why you should not reuse an address for outgoing 
transactions by using the Lamport One Time Signature scheme.  
That was a simplified explanation but not an accurate one.  
This tutorial will provide you the correct answer.

• In IOTA tutorial 16 I have never explained why the bundleHash is normalized.  
In this tutorial I will explain why this it is needed.



PREREQUISITES
mobilefish.com

• I assume that you have watched:

• IOTA tutorial 8: Cryptographic sponge construction

• IOTA tutorial 9.1: Key, Digests & Address

• IOTA tutorial 10: Transaction and bundle

• IOTA tutorial 15:  BundleHash

• IOTA tutorial 16:  normalizedBundleHash

• IOTA tutorial 17:  Create and validate a signature 



PREREQUISITES
mobilefish.com

• If you have not watched these videos you probably will not understand this tutorial.  
I highly recommended that you first watch these tutorials.



QUICK REFRESHER
mobilefish.com

• To be on the same page, in the following slides I will give you a quick refresher:

• What is a transaction bundle and transaction objects.

• What is a bundleHash and how it is created.

• What is a normalizedBundleHash and how it is created.

• How to calculate the number of hashes.

• How to create and validate a signatureFragment.

• How is an address calculated.



TRANSACTIONBUNDLE
mobilefish.com

tip0tip1

currentIndex N

trunkTransaction

hash

branchTransaction

currentIndex 2

trunkTransaction

hash

branchTransaction

currentIndex 1

trunkTransaction

hash

branchTransaction

currentIndex 0

trunkTransaction

hash

branchTransaction

:

Transaction bundle

currentIndex N

trunkTransaction

hash

branchTransaction

currentIndex 2

trunkTransaction

hash

branchTransaction

currentIndex 1

trunkTransaction

hash

branchTransaction

currentIndex 0

trunkTransaction

hash

branchTransaction

:

transactionObjects



TRANSACTIONOBJECT EXAMPLE
mobilefish.com

• This is what a single transactionObject looks like in a transaction bundle:
{

"hash": "YDDQ...A9999",

"signatureMessageFragment": "JHAK...MVGY",
"address": "HRKD...XKHX",
"value": -3,
"obsoleteTag": "999999999999999999999999999",
"timestamp": 1515494426,
"currentIndex": 1,
"lastIndex": 2,

"bundle": "RTGX...LQCY",
"trunkTransaction": "WVCLP...99999",
"branchTransaction": "DOXV...X999",
"tag": "999999999999999999999999999",
"attachmentTimestamp": 1515496571334,
"attachmentTimestampLowerBound": 0,
"attachmentTimestampUpperBound": 3812798742493,
"nonce": "AZ999IOB9999999999999999999",
"persistence": true

},

How is this 
bundleHash created?



BUNDLEHASH
mobilefish.com

• The bundle transactionObject addresses, values, obsoleteTags, timestamps, 
currentIndexes and lastIndexes are used to calculate the bundleEssences:

  bundleEssence =  
convertToTrits(address) +  
convertToTrytes(valueTrits) +  
obsoleteTag +  
convertToTrytes(timestampTrits) + 
convertToTrytes(currentIndexTrits) +  
convertToTrytes(lastIndexTrits))



BUNDLEHASH
mobilefish.com

• Use the cryptographic sponge construction to absorb the bundleEssences and 
squeeze the hash.
bundle = [transactionObject0, transactionObject1, transactionObject2, transactionObject3]

transactionObjectN = {address, value, obsoleteTag, timestamp, currentIndex, lastIndex}

transactionObject0

bundleEssence0
transactionObject1

bundleEssence1

transactionObject2

bundleEssence2
transactionObject3

bundleEssence3

f f f f f0 hash

absorbing squeezing 



BUNDLEHASH
mobilefish.com

• Convert the hash to trytes: 
bundleHash = convertToTrytes(hash)  



TRANSACTIONOBJECT EXAMPLE
mobilefish.com

• This is what a single transactionObject looks like in a transaction bundle:
{

"hash": "YDDQ...A9999",

"signatureMessageFragment": "JHAK...MVGY",
"address": "HRKD...XKHX",
"value": -3,
"obsoleteTag": "999999999999999999999999999",
"timestamp": 1515494426,
"currentIndex": 1,
"lastIndex": 2,

"bundle": "RTGX...LQCY",
"trunkTransaction": "WVCLP...99999",
"branchTransaction": "DOXV...X999",
"tag": "999999999999999999999999999",
"attachmentTimestamp": 1515496571334,
"attachmentTimestampLowerBound": 0,
"attachmentTimestampUpperBound": 3812798742493,
"nonce": "AZ999IOB9999999999999999999",
"persistence": true

},

bundleHash



NORMALIZED BUNDLEHASH
mobilefish.com

• The normalizedBundleHash is created by extracting the bundleHash from the 
transactionObject and the bundleHash is then normalized.

• The normalizedBundleHash contains no tryte value M and the "weights" of the trytes 
are evenly distributed.



NORMALIZED BUNDLEHASH
mobilefish.com

• You can think of normalizing the bundleHash as balancing a seesaw, by manipulating its 
“weight” (=trytes) to reach a more equilibrium state.

• The normalizedBundleHash is used to create or validate a signature. 

13
4

10

-1-4

Before normalizing  
sum = 22

first tryte  
in the part 13-13 4-4 -1

After normalizing  
sum = -1



mobilefish.com

CALCULATE NUMBER OF HASHES

K = 13 - decimal 23 26 23 13 12 23 19 20 1512025

K times to hash 
each segment to  
CREATE  
signatureFragment

K = 13 + decimal 3 0 3 13 14 3 7 6 112561

K times to hash 
each segment to  
VALIDATE  
signatureFragment

… …

…

…

… …

L Q…R T … 9 AZ T … C YW U
bundleHash
81 trytes

normalized  
BundleHash L Q…O T … 9 AN Q … T YQ U

normalized  
BundleFragment
27 trytes

-12 -7 12 -2-7-6-1010-10-13-10
tryte decimal  

value
… … …



mobilefish.com

s
e
c
u
r
i
t
y
 
l
e
v
e
l
 
1

… 25 260 1 … 25 260 1

key

… 25 260 1 … 25 260 1 … 25 260 1
hash each  
segment K times

segment  
each segment  
consists  
of 81 trytes

hash each  
keyFragment 1x

digests

each digests  
consists  
of 81 trytes

27 segments  
forms a  
keyFragment

3141330

… 25 260 1

1 3256 1167

1

address

0

1

1

1

address

1

2

1

address

1

hash n digests 
1x

s
e
c
u
r
i
t
y
 
l
e
v
e
l
 
2

s
e
c
u
r
i
t
y
 
l
e
v
e
l
 
3

signature  
Fragment

key  
Fragment

25 23120

… 25 260 1

26 121323

… 25 260 1

23 152019

… 25 260 1

hash each  
segment K times

fragment stored  
in bundle

Seed, index number, security level



SIGNATUREMESSAGEFRAGMENT EXAMPLE
mobilefish.com

• This is what a single transactionObject looks like in a transaction bundle:
{

"hash": "YDDQ...A9999",

"signatureMessageFragment": "JHAK...MVGY",
"address": "HRKD...XKHX",
"value": -3,
"obsoleteTag": "999999999999999999999999999",
"timestamp": 1515494426,
"currentIndex": 1,
"lastIndex": 2,

"bundle": "RTGX...LQCY",
"trunkTransaction": "WVCLP...99999",
"branchTransaction": "DOXV...X999",
"tag": "999999999999999999999999999",
"attachmentTimestamp": 1515496571334,
"attachmentTimestampLowerBound": 0,
"attachmentTimestampUpperBound": 3812798742493,
"nonce": "AZ999IOB9999999999999999999",
"persistence": true

},



mobilefish.com

s
e
c
u
r
i
t
y
 
l
e
v
e
l
 
1

… 25 260 1 … 25 260 1

key

… 25 260 1 … 25 260 1 … 25 260 1
hash each  
segment K times

segment  
each segment  
consists  
of 81 trytes

hash each  
keyFragment 1x

digests

each digests  
consists  
of 81 trytes

27 segments  
forms a  
keyFragment

3141330

… 25 260 1

1 3256 1167

1

address

0

1

1

1

address

1

2

1

address

1

hash n digests 
1x

s
e
c
u
r
i
t
y
 
l
e
v
e
l
 
2

s
e
c
u
r
i
t
y
 
l
e
v
e
l
 
3

signature  
Fragment

key  
Fragment

25 23120

… 25 260 1

26 121323

… 25 260 1

23 152019

… 25 260 1

hash each  
segment K times

fragment stored  
in bundle

Seed, index number, security level



mobilefish.com

s
e
c
u
r
i
t
y
 
l
e
v
e
l
 
1

… 25 260 1 … 25 260 1
key

… 25 260 1 … 25 260 1 … 25 260 1
hash each  
segment K times

segment  
each segment  
consists  
of 81 trytes

hash each  
keyFragment 1x

digests

each digests  
consists  
of 81 trytes

27 segments  
forms a  
keyFragment

2626262626

… 25 260 1

26 262626 262626

1

address

0

1

1

1

address

1

2

1

address

1

hash n digests 
1x

s
e
c
u
r
i
t
y
 
l
e
v
e
l
 
2

s
e
c
u
r
i
t
y
 
l
e
v
e
l
 
3

key  
Fragment

CALCULATE ADDRESS
Seed, index number, security level



WHY IS NORMALIZEDBUNDLEHASH NEEDED?
mobilefish.com

• I have created a simple value transaction: I have used security level 1 and transferred 1 
IOTA from address A to B and there is no remainder.

• See the corresponding transaction bundle: 
https://www.mobilefish.com/download/iota/transactions_in_bundle_security_level1.txt

• The transaction bundle has two transactionObjects.  
A transactionObject containing recipient data and the other containing  sender data.

• The senders signatureMessageFragment is  “KVSA…HMKW” and the senders address 
is  “VXO…LTKA”.

https://www.mobilefish.com/download/iota/transactions_in_bundle_security_level1.txt


WHY IS NORMALIZEDBUNDLEHASH NEEDED?
mobilefish.com

… 25 260 1

… 25 260 1

1 3256

1

address

0

1

key

digests

signature Fragment

key Fragment

25 23120

… 25 260 1

hash each segment K times

segment, each segment consists of 81 trytes

hash each keyFragment 1x

each digests consists of 81 trytes

27 segments forms a keyFragment

hash n digests 1x

hash each segment K times

fragment stored in bundle

security level 1



WHY IS NORMALIZEDBUNDLEHASH NEEDED?
mobilefish.com

• Let assume the submitted transaction bundle is pending and a hacker, called Eve, gets 
hold of this transaction bundle.

• Eve can change the transaction bundle by replacing the recipient’s address with her 
own address.  By doing so the bundleHash changes which means the 
normalizedBundleHash and the number of hashes (K) are also changed accordingly.



WHY IS NORMALIZEDBUNDLEHASH NEEDED?
mobilefish.com

bundle = [transactionObject0, transactionObject1]

transactionObjectN = {address, value, obsoleteTag, timestamp, currentIndex, lastIndex}

transactionObject0

bundleEssence0
transactionObject1

bundleEssence1

f f0

absorbing

f hash     bundleHash = convertToTrytes(hash)

squeezing 



mobilefish.com

WHY IS NORMALIZEDBUNDLEHASH NEEDED?

K = 13 - decimal 23 26 23 13 12 23 19 20 1512025

K times to hash 
each segment to  
CREATE  
signatureFragment

K = 13 + decimal 3 0 3 13 14 3 7 6 112561

K times to hash 
each segment to  
VALIDATE  
signatureFragment

… …

…

…

… …

L Q…R T … 9 AZ T … C YW U
bundleHash
81 trytes

normalized  
BundleHash L Q…O T … 9 AN Q … T YQ U

normalized  
BundleFragment
27 trytes

-12 -7 12 -2-7-6-1010-10-13-10
tryte decimal  

value
… … …

K = number of hashes



WHY IS NORMALIZEDBUNDLEHASH NEEDED?
mobilefish.com

… 25 260 1

… 25 260 1 fragment stored in bundle

9 12132

1 6 25 3

hash each segment K times

hash each keyFragment 1x

each digests consists of 81 trytes

27 segments forms a keyFragment

hash n digests 1x

Number of hashes (K) changed!

The generated address does not match the senders 
address. Eve’s attempt will fail.

1

address

0

1



WHY IS NORMALIZEDBUNDLEHASH NEEDED?
mobilefish.com

D 5 D5

Data (D) is hashed 5x to get the hashed result D5:

D 1 D1 1 D2 1 D3 1 D4 1 D5

You can also draw it this way:

D 1 D1 1 D2 1 D3 1 D4 1 D5

Question: Can you hash a value 3x to get D5?
Answer: Yes, if you start with D2.

Question: Can you hash a value 6x to get D5?
Answer: No, you can’t! A hash algorithm is a one-way function.



WHY IS NORMALIZEDBUNDLEHASH NEEDED?
mobilefish.com

D 5 D5

Data (D) is hashed 5x to get the hashed result D5:

Question: Can you hash a value 1x to get D5?
Answer: Yes, if you start with D4.

D4 1 D5

Question: Can you hash a value 4x to get D5?
Answer: Yes, if you start with D1.

D1 4 D5

Question: Can you hash a value 7x to get D5?
Answer: No, you can’t.



WHY IS NORMALIZEDBUNDLEHASH NEEDED?
mobilefish.com

• Eve knows she can change the signatureFragment.

1

4

1

6

1 1

14

2

1

=

25

12

25

25

25 25

2512

13

25

=

… 25120 14

9 2 13

26

12

… 25 260 1

signature fragment 
hacked

K hacked

segment
hashed 4x

segment
hashed 12x

WHY IS NORMALIZEDBUNDLEHASH NEEDED?

Khacked, 
after Eve changed the 
address

signature fragment

… 25 260 1

25 260 1

9 12132

1 6 25 3 Koriginal

…



WHY IS NORMALIZEDBUNDLEHASH NEEDED?
mobilefish.com

• But Eve still has a problem with the first and last segment. 

• Her attempt is only successful if all Koriginal values are bigger of equal than the 
corresponding Khacked values.

WHY IS NORMALIZEDBUNDLEHASH NEEDED?

… 25120 14

9 2 13

26

12

… 25 260 1

signature fragment 
hacked

K hacked

segment
hashed 4x

segment
hashed 12x

Khacked

signature fragment

… 25 260 1

25 260 1

9 12132

1 6 25 3

…
Koriginal



WHY IS NORMALIZEDBUNDLEHASH NEEDED?
mobilefish.com

• Now lets assume the following case: 
The Koriginal values are all between 14-26. 
The Khacked values are all between 1-13.

• In this case, Eve can successfully hack the transaction bundle and send IOTAs to her 
address.

WHY IS NORMALIZEDBUNDLEHASH NEEDED?

… 251208 111

9 2 13

262

12

… 25 260 1

signature fragment 
hacked

K hacked

8x 12x11x 2x

Khacked

signature fragment

… 25 260 1

25 260 1

9 12132

17 13 25 14 Koriginal

…



WHY IS NORMALIZEDBUNDLEHASH NEEDED?
mobilefish.com

• However in reality the previous mentioned case is difficult to realise because a 
normalizedBundleHash is used.

• Eve attempt can only be successful if ALL Koriginal values are bigger of equal than the 
corresponding Khacked values.

• By using a normalizedBundleHash the probability that this will happen is small.

WHY IS NORMALIZEDBUNDLEHASH NEEDED?



WHY IS NORMALIZEDBUNDLEHASH NEEDED?
mobilefish.com

WHY IS NORMALIZEDBUNDLEHASH NEEDED?

L Q…R T … 9 AZ T … C YW U
bundleHash
81 trytes

normalized  
BundleHash L Q…O T … 9 AN Q … T YQ U

normalized  
BundleFragment
27 trytes

-12 -7 12 -2-7-6-1010-10-13-10tryte decimal  
value

… … …

K = 13 + decimal 3 0 3 13 14 3 7 6 112561

K times to hash 
each segment to  
VALIDATE  
signatureFragment

…… …
K = number of hashes



WHY IS NORMALIZEDBUNDLEHASH NEEDED?
mobilefish.com

• The previous mentioned decimal values (= normalizedBundleHash tryte values 
converted to decimal values) are in the range -13 to 13 and are evenly distributed just 
like a seesaw. 

• By distributing these values evenly the Koriginal values are “spread”.  
You will have low values: 1-13 and high values 14-26. 
You can not have only Koriginal values between 14 and 26, the normalizedBundleHash 
prevents this.

WHY IS NORMALIZEDBUNDLEHASH NEEDED?

13
4

10

-1-4

Before normalizing  
sum = 22

13-13 4-4 -1

After normalizing  
sum = -1



WHY NOT REUSE AN ADDRESS FOR OUTGOING TXS?
mobilefish.com

… 25 260 1

… 25 260 1

1 3254

1

address

0

1

digests

signature Fragment

key Fragment … 25 260 1

… 25 260 1

20 21115

1

address

0

1

1st tx bundle 2nd tx bundle

Create another outgoing transaction using the same address



WHY NOT REUSE AN ADDRESS FOR OUTGOING TXS?
mobilefish.com

• Eve has found these two transaction bundles using the same address A for outgoing 
transactions.

• A few days later, Eve noticed 500 MIOTA were send to address A.

• Eve tries a hack attempt, she takes the 2nd transaction bundle:

• From the receiver tx object, she change the recipient’s address with her own address 
and change the recipient’s value to 500 MIOTA.

• From the sender tx object, she change the spending value to 500 MIOTA.  

• By doing so the bundleHash, normalizedBundleHash and the K values are changed.



WHY NOT REUSE AN ADDRESS FOR OUTGOING TXS?
mobilefish.com

… 25 260 1

… 25 260 1

1 3254

1

address

0

1

1st tx bundle

… 25 260 1

… 25 260 1

20 21115

1

address

0

1

2nd tx bundle

… 25 260 1

… 25 261102 1

18 10124

1

address

0

1

Eve modified 2nd tx bundle

20 21115

Using 2nd tx bundle
Hack attempt not successful

Koriginal

Khacked



WHY NOT REUSE AN ADDRESS FOR OUTGOING TXS?
mobilefish.com

… 25 260 1

… 25 260 1

1 3254

1

address

0

1

1st tx bundle

… 25 260 1

… 25 261102 1

18 10124

1

address

0

1

Eve modified 2nd tx bundle

20 21115

Using 2nd bundle
Hack attempt not 
successful

… 25 260 1

… 2513 261102 1

18 10124

1

address

0

1

Eve modified 1st tx bundle

20 21254

Using 2nd & 1st
tx bundle
Hack attempt is
successful

Koriginal

Khacked



WHY NOT REUSE AN ADDRESS FOR OUTGOING TXS?
mobilefish.com

• If you reuse an address for outgoing addresses you provide a hacker more possibilities 
to successfully create a modified transaction bundle sending IOTAs from the victim’s 
address to the hackers address.

• Reusing an address for outgoing transactions does not mean the hacker will 
immediately succeed in its hack attempt, but it will definitely increase its chances.


