This tool allows you to add (+), subtract (-), mutiply (*), calculate the modulo (%),
calculate the power (^) or calculate the greatest common divisor (gcd) of very large positive integer numbers.
The calculation result bitsize is also calculated.
An example of a big decimal number:
1273996296181018710611647143694151388896909932754376274204440944923205432723072
8366135879053383805072316653724894187029827876824054296840853269389449560099146
2888770154271773743688518108469133360749226067433284253841524878382663213020300
439013395051660095465213244114983915020095532593844192661702194876809221
An example of a big hexadecimal number:
e8 f9 86 0f 90 fa 86 d7 df bd 72 26 b6 d7 44 02
83 78 73 d9 02 28 ef 88 45 39 fb 10 e8 7c ae a9
38 d5 75 c6 38 eb 0a 15 07 9b 83 e8 cd 82 d5 e3
f7 15 68 45 a1 0b 19 85 bc e2 ef 84 e7 dd f2 d7
b8 98 c2 a1 bb b5 c1 51 df d4 83 02 a7 3d 06 42
5b e1 22 c3 de 6b 85 5f 1c d6 da 4e 8b d3 9b ee
b9 67 22 2a 1d 11 ef 79 a4 b3 37 8a f4 fe 18 fd
bc f9 46 23 50 97 f3 ac fc 24 46 2b 5c 3b b7 45
Note: In a Windows calculator you can enter big numbers with less than 33 digits, but this tool allows you to enter much more than that!
How this tool works:
- Enter the big integer positive numbers indicated by a, b, c, d or e in the corresponding input fields and specify its encoding scheme (binary,
decimal, hexadecimal or base64).
- Enter the equation in the "Calculation equation" area, see the table below which equation can be used.
Use the variables a, b, c, d or e in your equation to reference the big numbers.
- Select the encoding scheme the calculation result should be converted into.
- Press the Calculate button.
a + b
|
Add a and b.
|
3 + 2 = 5
|
add(a,b)
|
a + n
|
Add a and n
|
3 + 2 = 5
|
addInt(a,n)
|
a * b
|
Multiply a and b
|
3 * 2 = 6
|
mult(a,b)
|
a - b
|
Subtract a and b
|
3 - 2 = 1
|
sub(a,b)
|
gcd(a,b)
|
Calculate greatest common divisor of a and b.
|
gcd(36,24) = 12
|
GCD(a,b)
|
a ^ b
|
Calculate a ^ b
|
2 ^ 3 = 8
|
bigPow(a,b)
|
a % b
|
Calculate a modulo b
|
11 % 7 = 4
|
mod(a,b)
|
(a * b) % c
|
Multiply a and b. Calculate result modulo c
|
(3 * 5) % 9 = 6
|
multMod(a,b,c)
|
(a ^ b) % c
|
Calculate ab. Calculate result modulo c
|
(3 ^ 2) % 6 = 3
|
powMod(a,b,c)
|
(a ^ -1) % b
|
Calculate a-1. Calculate result modulo b
|
(2 ^ -1) % 3 = 2
|
inverseMod(a,b)
|
Examples
|
(a + b) * (c + d)
|
-
|
(1 + 2) * (3 + 4) = 21
|
mult(add(a,b), add(c,d))
|
(a - b) * (c - d)
|
-
|
(2 - 1) * (4 - 2) = 2
|
mult(sub(a,b), sub(c,d))
|
(a - 1) * (b - 1)
|
-
|
(5 - 1) * (7 - 1) = 24
|
mult(addInt(a,-1), addInt(b,-1))
|
a + b + c + d + e
|
-
|
1 + 2 + 3 + 4 + 5 = 15
|
add(add(add(add(a,b),c),d),e)
|
Note:
a, b, c, d or e are big positive integer numbers.
n is a small integer number
Input big number equation calculation:
|
Output big number equation calculation:
|
|